The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine. 1992

I Rossol, and A Pühler
Department of Genetics, University of Bielefeld, Germany.

S-(beta-Aminoethyl)-cysteine (AEC) resistance was achieved in Corynebacterium glutamicum by cloning a chromosomal 1.5-kb EcoRV-BglII DNA fragment on a multicopy plasmid. DNA sequence analysis of the 1.5-kb DNA fragment revealed an open reading frame (ORF326) which represents the AEC resistance gene, designated aecD. The aecD gene directs the synthesis of a 36-kDa protein which was visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The aecD gene is a nonessential gene and mediates AEC resistance only in an amplified state. C. glutamicum strains harboring an amplified aecD gene can utilize AEC as an alternative nitrogen source, indicating that the AEC resistance mechanism is due to AEC degradation. Since the AEC degradation products analyzed by high-pressure liquid chromatography were found to be pyruvate and aminoethanethiol (cysteamine), it was concluded that the aecD gene encodes a C-S lyase with alpha, beta-elimination activity. Besides AEC, the C-S lyase was also able to use cysteine, cystine, and cystathionine as substrates.

UI MeSH Term Description Entries
D008190 Lyases A class of enzymes that catalyze the cleavage of C-C, C-O, and C-N, and other bonds by other means than by hydrolysis or oxidation. (Enzyme Nomenclature, 1992) EC 4. Desmolase,Desmolases,Lyase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D003352 Corynebacterium A genus of asporogenous bacteria that is widely distributed in nature. Its organisms appear as straight to slightly curved rods and are known to be human and animal parasites and pathogens.
D003543 Cysteamine A mercaptoethylamine compound that is endogenously derived from the COENZYME A degradative pathway. The fact that cysteamine is readily transported into LYSOSOMES where it reacts with CYSTINE to form cysteine-cysteamine disulfide and CYSTEINE has led to its use in CYSTINE DEPLETING AGENTS for the treatment of CYSTINOSIS. Cysteinamine,Mercaptamine,2-Aminoethanethiol,Becaptan,Cystagon,Cysteamine Bitartrate,Cysteamine Dihydrochloride,Cysteamine Hydrobromide,Cysteamine Hydrochloride,Cysteamine Maleate (1:1),Cysteamine Tartrate,Cysteamine Tartrate (1:1),Cysteamine Tosylate,Cysteamine, 35S-Labeled,Mercamine,Mercaptoethylamine,beta-Mercaptoethylamine,2 Aminoethanethiol,35S-Labeled Cysteamine,Bitartrate, Cysteamine,Cysteamine, 35S Labeled,Dihydrochloride, Cysteamine,Hydrobromide, Cysteamine,Hydrochloride, Cysteamine,Tartrate, Cysteamine,Tosylate, Cysteamine,beta Mercaptoethylamine
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

I Rossol, and A Pühler
July 2006, Applied and environmental microbiology,
I Rossol, and A Pühler
June 2011, Applied microbiology and biotechnology,
I Rossol, and A Pühler
August 2007, Applied and environmental microbiology,
I Rossol, and A Pühler
June 2010, Applied microbiology and biotechnology,
I Rossol, and A Pühler
April 2019, Journal of bioscience and bioengineering,
I Rossol, and A Pühler
December 2022, Metallomics : integrated biometal science,
Copied contents to your clipboard!