Differentiation of acute and chronic myeloid leukemic blasts into the dendritic cell lineage: analysis of various differentiation-inducing signals. 2005

Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
Division of Hematology/Oncology, Department of Medicine, University of Miami, Miami, FL 33136, USA.

OBJECTIVE Ex vivo differentiation of myeloid leukemic blasts into dendritic cells (DCs) holds significant promise for use as cellular vaccines, as they may present a constellation of endogenously expressed known and unknown leukemia antigens to the immune system. Although variety of stimuli can drive leukemia --> DC differentiation in vitro, these blast-derived DCs typically have aberrant characteristics compared with DCs generated from normal progenitors by the same stimuli. It is not clear whether this is due to underlying leukemogenic mechanisms (e.g., specific oncogenes), genetic defects, stage of maturation arrest, defects in cytokine receptor expression or signal transduction pathways, or whether different stimuli themselves induce qualitatively dissimilar DC differentiation. METHODS To assess what factors may contribute to aberrant leukemic blast --> DC differentiation, we have examined how the same leukemic blasts (AML and CML) respond to different DC differentiation signals--including extracellular (the cytokine combination GM-CSF + TNF-alpha + IL-4) and intracellular (the protein kinase C agonist PMA, the calcium ionophore A23187, and the combination of PMA plus A23187) stimuli. RESULTS We have found that the same leukemic blasts will develop qualitatively different sets of DC characteristics in response to differing stimuli, although no stimuli consistently induced all of the characteristic DC features. There were no clear differences in the responses relative to specific oncogene expression or stage of maturation arrest (AML vs CML). Signal transduction agonists that bypassed membrane receptors/proximal signaling (in particular, the combination of PMA and A23187) consistently induced the greatest capability to activate T cells. Interestingly, this ability did not clearly correlate with expression of MHC/costimulatory ligands. CONCLUSIONS Our findings suggest that signal transduction may play an important role in the aberrant DC differentiation of leukemic blasts, and demonstrate that direct activation of PKC together with intracellular calcium signaling may be an effective method for generating immunostimulatory leukemia-derived DCs.

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001752 Blast Crisis An advanced phase of chronic myelogenous leukemia, characterized by a rapid increase in the proportion of immature white blood cells (blasts) in the blood and bone marrow to greater than 30%. Blast Phase,Blast Crises,Blast Phases,Crises, Blast,Crisis, Blast,Phase, Blast,Phases, Blast
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015464 Leukemia, Myelogenous, Chronic, BCR-ABL Positive Clonal hematopoetic disorder caused by an acquired genetic defect in PLURIPOTENT STEM CELLS. It starts in MYELOID CELLS of the bone marrow, invades the blood and then other organs. The condition progresses from a stable, more indolent, chronic phase (LEUKEMIA, MYELOID, CHRONIC PHASE) lasting up to 7 years, to an advanced phase composed of an accelerated phase (LEUKEMIA, MYELOID, ACCELERATED PHASE) and BLAST CRISIS. Granulocytic Leukemia, Chronic,Leukemia, Granulocytic, Chronic,Leukemia, Myelocytic, Chronic,Leukemia, Myelogenous, Chronic,Leukemia, Myeloid, Chronic,Myelocytic Leukemia, Chronic,Myelogenous Leukemia, Chronic,Myeloid Leukemia, Chronic,Leukemia, Chronic Myelogenous,Leukemia, Chronic Myeloid,Leukemia, Myelogenous, Ph1 Positive,Leukemia, Myelogenous, Ph1-Positive,Leukemia, Myeloid, Ph1 Positive,Leukemia, Myeloid, Ph1-Positive,Leukemia, Myeloid, Philadelphia Positive,Leukemia, Myeloid, Philadelphia-Positive,Myelogenous Leukemia, Ph1-Positive,Myeloid Leukemia, Ph1-Positive,Myeloid Leukemia, Philadelphia-Positive,Chronic Granulocytic Leukemia,Chronic Granulocytic Leukemias,Chronic Myelocytic Leukemia,Chronic Myelocytic Leukemias,Chronic Myelogenous Leukemia,Chronic Myelogenous Leukemias,Chronic Myeloid Leukemia,Chronic Myeloid Leukemias,Granulocytic Leukemias, Chronic,Leukemia, Chronic Granulocytic,Leukemia, Chronic Myelocytic,Leukemia, Ph1-Positive Myelogenous,Leukemia, Ph1-Positive Myeloid,Leukemia, Philadelphia-Positive Myeloid,Leukemias, Chronic Granulocytic,Leukemias, Chronic Myelocytic,Leukemias, Chronic Myelogenous,Leukemias, Chronic Myeloid,Leukemias, Ph1-Positive Myelogenous,Leukemias, Ph1-Positive Myeloid,Leukemias, Philadelphia-Positive Myeloid,Myelocytic Leukemias, Chronic,Myelogenous Leukemia, Ph1 Positive,Myelogenous Leukemias, Chronic,Myelogenous Leukemias, Ph1-Positive,Myeloid Leukemia, Ph1 Positive,Myeloid Leukemia, Philadelphia Positive,Myeloid Leukemias, Chronic,Myeloid Leukemias, Ph1-Positive,Myeloid Leukemias, Philadelphia-Positive,Ph1-Positive Myelogenous Leukemia,Ph1-Positive Myelogenous Leukemias,Ph1-Positive Myeloid Leukemia,Ph1-Positive Myeloid Leukemias,Philadelphia-Positive Myeloid Leukemia,Philadelphia-Positive Myeloid Leukemias
D015470 Leukemia, Myeloid, Acute Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES. Leukemia, Myelogenous, Acute,Leukemia, Nonlymphocytic, Acute,Myeloid Leukemia, Acute,Nonlymphocytic Leukemia, Acute,ANLL,Acute Myelogenous Leukemia,Acute Myeloid Leukemia,Acute Myeloid Leukemia with Maturation,Acute Myeloid Leukemia without Maturation,Leukemia, Acute Myelogenous,Leukemia, Acute Myeloid,Leukemia, Myeloblastic, Acute,Leukemia, Myelocytic, Acute,Leukemia, Myeloid, Acute, M1,Leukemia, Myeloid, Acute, M2,Leukemia, Nonlymphoblastic, Acute,Myeloblastic Leukemia, Acute,Myelocytic Leukemia, Acute,Myelogenous Leukemia, Acute,Myeloid Leukemia, Acute, M1,Myeloid Leukemia, Acute, M2,Nonlymphoblastic Leukemia, Acute,Acute Myeloblastic Leukemia,Acute Myeloblastic Leukemias,Acute Myelocytic Leukemia,Acute Myelocytic Leukemias,Acute Myelogenous Leukemias,Acute Myeloid Leukemias,Acute Nonlymphoblastic Leukemia,Acute Nonlymphoblastic Leukemias,Acute Nonlymphocytic Leukemia,Acute Nonlymphocytic Leukemias,Leukemia, Acute Myeloblastic,Leukemia, Acute Myelocytic,Leukemia, Acute Nonlymphoblastic,Leukemia, Acute Nonlymphocytic,Leukemias, Acute Myeloblastic,Leukemias, Acute Myelocytic,Leukemias, Acute Myelogenous,Leukemias, Acute Myeloid,Leukemias, Acute Nonlymphoblastic,Leukemias, Acute Nonlymphocytic,Myeloblastic Leukemias, Acute,Myelocytic Leukemias, Acute,Myelogenous Leukemias, Acute,Myeloid Leukemias, Acute,Nonlymphoblastic Leukemias, Acute,Nonlymphocytic Leukemias, Acute

Related Publications

Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
June 2004, Leukemia,
Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
September 1999, Blood,
Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
December 2019, Proceedings of the National Academy of Sciences of the United States of America,
Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
May 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
April 1986, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
May 2007, Leukemia,
Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
September 2011, Immunotherapy,
Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
April 2006, International journal of oncology,
Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
August 2003, Leukemia,
Mohamed Kharfan-Dabaja, and Ernesto Ayala, and Inna Lindner, and Pedro J Cejas, and Nizar J Bahlis, and Despina Kolonias, and Louise M Carlson, and Kelvin P Lee
June 2009, Pathology oncology research : POR,
Copied contents to your clipboard!