Identification and characterization of a cardiac-specific transcriptional regulatory element in the slow/cardiac troponin C gene. 1992

M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor.

The slow/cardiac troponin C (cTnC) gene has been used as a model system for defining the molecular mechanisms that regulate cardiac and skeletal muscle-specific gene expression during mammalian development. cTnC is expressed continuously in both embryonic and adult cardiac myocytes but is expressed only transiently in embryonic fast skeletal myotubes. We have reported previously that cTnC gene expression in skeletal myotubes is controlled by a developmentally regulated, skeletal muscle-specific transcriptional enhancer located within the first intron of the gene (bp 997 to 1141). In this report, we show that cTnC gene expression in cardiac myocytes both in vitro and in vivo is regulated by a distinct and independent transcriptional promoter and enhancer located within the immediate 5' flanking region of the gene (bp -124 to +32). DNase I footprint and electrophoretic mobility shift assay analyses demonstrated that this cardiac-specific promoter/enhancer contains five nuclear protein binding sites (designated CEF1, CEF-2, and CPF1-3), four of which bind novel cardiac-specific nuclear protein complexes. Functional analysis of the cardiac-specific cTnC enhancer revealed that mutation of either the CEF-1 or CEF-2 nuclear protein binding site abolished the activity of the cTnC enhancer in cardiac myocytes. Taken together, these results define a novel mechanism for developmentally regulating a single gene in multiple muscle cell lineages. In addition, they identify previously undefined cardiac-specific transcriptional regulatory motifs and trans-acting factors. Finally, they demonstrate distinct transcriptional regulatory pathways in cardiac and skeletal muscle.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I

Related Publications

M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
August 1989, The Journal of biological chemistry,
M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
November 1986, Cell,
M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
March 1997, Gene,
M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
October 2014, Proceedings of the National Academy of Sciences of the United States of America,
M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
January 2003, American journal of physiology. Lung cellular and molecular physiology,
M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
October 1992, The Journal of biological chemistry,
M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
January 1980, European journal of biochemistry,
M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
May 2001, Biochemistry,
M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
November 1993, Molecular and cellular biology,
M S Parmacek, and A J Vora, and T Shen, and E Barr, and F Jung, and J M Leiden
June 1995, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!