Cooperativity and intermediate structures of single-stranded DNA binding-assisted RecA-single-stranded DNA complex formation studied by atomic force microscopy. 2005

K Umemura, and T Okada, and R Kuroda
Joint Research Center for Atom Technology, Ibaraki.

The formation of a complex between RecA protein and single-stranded (ss) DNA was studied systematically by atomic force microscopy (AFM) by varying incubation time and the molecular ratio of RecA protein to single-stranded DNA binding (SSB) protein. New intermediate structures, such as small circular, tangled, and protruded structures in the absence of SSB and sharply turned structures in the presence of SSB, were clearly identified at the early stage of complex formation. These structures have probably resulted from competitive binding of RecA and SSB to DNA. After long incubation, only fully covered RecA-ssDNA and totally RecA-free SSB-ssDNA complexes were present regardless of RecA concentrations. Together with intermediate structures which consisted of only two parts, that is, ssDNA covered by SSB and by RecA proteins, the observation suggested strong neighbor cooperative binding of RecA to ssDNA assisted by SSB.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D018625 Microscopy, Atomic Force A type of scanning probe microscopy in which a probe systematically rides across the surface of a sample being scanned in a raster pattern. The vertical position is recorded as a spring attached to the probe rises and falls in response to peaks and valleys on the surface. These deflections produce a topographic map of the sample. Atomic Force Microscopy,Force Microscopy,Scanning Force Microscopy,Atomic Force Microscopies,Force Microscopies,Force Microscopies, Scanning,Force Microscopy, Scanning,Microscopies, Atomic Force,Microscopies, Force,Microscopies, Scanning Force,Microscopy, Force,Microscopy, Scanning Force,Scanning Force Microscopies

Related Publications

K Umemura, and T Okada, and R Kuroda
January 2000, Nucleic acids symposium series,
K Umemura, and T Okada, and R Kuroda
January 1999, Nucleic acids symposium series,
K Umemura, and T Okada, and R Kuroda
July 1992, Nucleic acids research,
K Umemura, and T Okada, and R Kuroda
October 2005, Journal of nanoscience and nanotechnology,
K Umemura, and T Okada, and R Kuroda
January 2013, Colloids and surfaces. B, Biointerfaces,
K Umemura, and T Okada, and R Kuroda
October 2010, Micron (Oxford, England : 1993),
Copied contents to your clipboard!