New developments in magnetic resonance imaging of the brain. 2004

Alan P Koretsky
Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20812, USA. koretskya@ninds.nih.gov

Magnetic resonance imaging (MRI) continues to have a large impact on the diagnosis and management of a number of diseases, especially diseases associated with brain injury. The strengths of MRI are the unique contrast that can be obtained, and the fact that it is not harmful and that it can be readily applied to human and animal models. The past decade has seen development of functional MRI techniques that measure aspects of hemodynamics and water diffusion that are playing an important role. Indeed, these techniques are having a major impact on management of brain injury. The development of MRI continues at a rapid pace and a renewed push to increased spatial and temporal resolution will extend the applicability of anatomical and functional MRI. Increased interest in molecular imaging using MRI is increasing the number of processes that can be imaged in the brain. This work reviews some new developments that are being made in anatomical, functional, and molecular MRI of the brain, with comments about usefulness for work in the area of neuroprotection.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D011859 Radiography Examination of any part of the body for diagnostic purposes by means of X-RAYS or GAMMA RAYS, recording the image on a sensitized surface (such as photographic film). Radiology, Diagnostic X-Ray,Roentgenography,X-Ray, Diagnostic,Diagnostic X-Ray,Diagnostic X-Ray Radiology,X-Ray Radiology, Diagnostic,Diagnostic X Ray,Diagnostic X Ray Radiology,Diagnostic X-Rays,Radiology, Diagnostic X Ray,X Ray Radiology, Diagnostic,X Ray, Diagnostic,X-Rays, Diagnostic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Alan P Koretsky
February 2013, Deutsche medizinische Wochenschrift (1946),
Alan P Koretsky
July 1998, Hospital medicine (London, England : 1998),
Alan P Koretsky
January 1984, Neurosurgical review,
Alan P Koretsky
July 2012, The Journal of rheumatology. Supplement,
Alan P Koretsky
January 1995, Magnetic resonance imaging,
Alan P Koretsky
September 1993, Investigative radiology,
Alan P Koretsky
November 1991, Trends in pharmacological sciences,
Alan P Koretsky
February 1991, Current opinion in radiology,
Alan P Koretsky
November 1991, Investigative radiology,
Copied contents to your clipboard!