Retinal bipolar cells: contrast encoding for sinusoidal modulation and steps of luminance contrast. 2004

Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA. burkh001@tc.umn.edu

Contrast encoding for sinusoidal modulations of luminance contrast was investigated by intracellular recording in the intact salamander retina. In what appears to be the first study of this kind for vertebrate bipolar cells, responses of the central receptive-field mechanism of cone-driven cells to modulation of 3 Hz were analyzed quantitatively via both signal averaging and a Fast Fourier Transform (FFT) while the retina was light adapted to 20 cd/m2. Depolarizing and hyperpolarizing bipolar cells showed very similar encoding. Both responded with sinusoidal waveforms whose amplitude varied linearly with modulation depths ranging up to 7-8%. The slope of the modulation/response curve was very steep in this range. Thus, the contrast gain was high, reaching values of 6-7, and the half-maximal response was achieved at modulations of 9% or less. At modulations above approximately 15%, the responses typically showed strong compressive nonlinearity and the waveform was increasingly distorted. At maximum modulation, the higher harmonics of the FFT constituted about 30% of the amplitude of the fundamental. Measurements were also made for cones and horizontal cells. Both cell types showed predominantly linear responses and low contrast gain, in marked contrast to bipolar cells. These results suggest that the high contrast gain and strong nonlinearity of bipolar cells largely arise postsynaptic to cone transmitter release. Further experiments were performed to compare responses to contrast steps versus those to sinusoidal modulation. In the linear range, we show that the contrast gains of cones and horizontal cells are low and virtually identical for both steps and sinusoidal modulations. In bipolar cells, on the other hand, the contrast gain is about two times greater for steps than that for the 3-Hz sine waves. These results suggest that mechanisms intrinsic to bipolar cells act like a high-pass filter with a short time constant to selectively emphasize contrast transients over slower changes in contrast.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015350 Contrast Sensitivity The ability to detect sharp boundaries (stimuli) and to detect slight changes in luminance at regions without distinct contours. Psychophysical measurements of this visual function are used to evaluate VISUAL ACUITY and to detect eye disease. Visual Contrast Sensitivity,Sensitivity, Contrast,Sensitivity, Visual Contrast
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
January 2003, Visual neuroscience,
Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
October 2011, Nature neuroscience,
Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
March 2005, Neuroreport,
Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
August 1995, Vision research,
Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
July 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
September 2015, Journal of neurophysiology,
Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
November 1994, Vision research,
Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
August 1998, Journal of the Optical Society of America. A, Optics, image science, and vision,
Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
September 1992, Journal of the Optical Society of America. A, Optics and image science,
Dwight A Burkhardt, and Patrick K Fahey, and Michael A Sikora
February 2012, Neuron,
Copied contents to your clipboard!