Structure of cross-linked rabbit muscle phosphofructokinase in solution. 1979

H H Paradies

Cross-linked rabbit muscle phosphofructokinase in the active tetrameric and octameric state was studied in solution by hydrodynamic methods and small angle x-ray scattering techniques. The translational diffusion coefficients were determined by means of inelastic light scattering and were found to be 3.60 (+/- 0.02) x 10(-7) cm2 . s-1 for the tetramer and 2.54 (+/- 0.15) x 10(-7) cm2 . s-1 for the octamer. From small angle x-ray scattering measurements the radius of gyration, the specific inner surface area, and the volume were determined for both enzyme forms, revealing that the octameric cross-linked form is approximately spherical, with a diameter of 120.0 A, whereas the tetrameric form is asymmetric having an axial ratio of 2. By comparison of the scattering curves with triaxial geometric bodies which are equivalent in scattering, the tetrameric enzyme is described as a rectangular prism, with overall dimensions of A = 131.0 A, B = 131.0 A, and C = 65.0 A, and the octameric form as that of a cube with A = B = C = 120.0 A. The shape of the protomer, having a radius of gyration of 24.8 A, in the tetramer and octamer is similar to that for the native tetramer at pH 10 in the presence of 5 mM fructose 6-phosphate or 15 mM fructose 1,6-bis-phosphate. From the different shapes of the scattering curves of the native phosphofructokinase at pH 7.5 in the presence of 15 mM ATP and of the cross-linked tetramer or octamer, it can be inferred that the shapes of the protomers are different: in the presence of ATP the protomers are elongated, having an axial ratio of 1.8 to 2.0; the cross-linked state reveals a spherical protomer of radius 33.0 A, similar to that of the native enzyme at pH 7.5 in the presence of fructose 6-phosphate or fructose 1,6-bisphosphate.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

H H Paradies
March 1973, Biochemistry,
H H Paradies
January 1976, Biochemical Society transactions,
H H Paradies
January 1975, Methods in enzymology,
H H Paradies
January 1975, Ukrains'kyi biokhimichnyi zhurnal,
H H Paradies
April 1972, Archives of biochemistry and biophysics,
H H Paradies
January 1947, Federation proceedings,
H H Paradies
February 1997, Biophysical chemistry,
H H Paradies
October 1974, The Journal of biological chemistry,
H H Paradies
April 1972, European journal of biochemistry,
Copied contents to your clipboard!