Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. 2005

Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, California 94305, USA.

Classical cadherins have been proposed to mediate interactions between pre- and postsynaptic cells that are necessary for synapse formation. We provide the first direct, genetic evidence in favor of this model by examining the role of N-cadherin in controlling the pattern of synaptic connections made by photoreceptor axons in Drosophila. N-cadherin is required in both individual photoreceptors and their target neurons for photoreceptor axon extension. Cell-by-cell reconstruction of wild-type photoreceptor axons extending within mosaic patches of mutant target cells shows that N-cadherin mediates attractive interactions between photoreceptors and their targets. This interaction is not limited to those cells that will become the synaptic partners of photoreceptors. Multiple N-cadherin isoforms are produced, but single isoforms can substitute for endogenous N-cadherin activity. We propose that N-cadherin mediates a homophilic, attractive interaction between photoreceptor growth cones and their targets that precedes synaptic partner choice.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
February 2006, Seminars in cell & developmental biology,
Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
November 1998, Cell,
Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
April 2008, Neuron,
Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
November 2009, Journal of neuroscience research,
Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
December 2009, Developmental biology,
Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
September 1994, Cell,
Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
July 2000, Developmental dynamics : an official publication of the American Association of Anatomists,
Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
December 1991, Physical review letters,
Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
December 2013, The Journal of cell biology,
Saurabh Prakash, and Jason C Caldwell, and Daniel F Eberl, and Thomas R Clandinin
August 2011, Neuron,
Copied contents to your clipboard!