Monte Carlo calculations of output factors for clinically shaped electron fields. 2004

Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
Department of Radiation Oncology, University of Illinois Medical Center, OCC C-400, 1801 W. Taylor Street, Chicago, Illinois 60612, USA. turian@uic.edu

We report on the use of the EGS4/BEAM Monte Carlo technique to predict the output factors for clinically relevant, irregularly shaped inserts as they intercept a linear accelerator's electron beams. The output factor for a particular combination--energy, cone, insert, and source-to-surface distance (SSD)--is defined in accordance with AAPM TG-25 as the product of cone correction factor and insert correction factor, evaluated at the depth of maximum dose. Since cone correction factors are easily obtained, we focus our investigation on the insert correction factors (ICFs). An analysis of the inserts used in routine clinical practice resulted in the identification of a set of seven "idealized" shapes characterized by specific parameters. The ICFs for these shapes were calculated using a Monte Carlo method (EGS4/BEAM) and measured for a subset of them using an ion chamber and well-established measurement methods. Analytical models were developed to predict the Monte Carlo-calculated ICF values for various electron energies, cone sizes, shapes, and SSDs. The goodness-of-fit between predicted and Monte Carlo-calculated ICF values was tested using the Kolmogorov-Smirnoff statistical test. Results show that Monte Carlo-calculated ICFs match the measured values within 2.0% for most of the shapes considered, except for few highly elongated fields, where deviations up to 4.0% were recorded. Predicted values based on analytical modeling agree with measured ICF values within 2% to 3% for all configurations. We conclude that the predicted ICF values based on modeling of Monte Carlo-calculated values could be introduced in clinical use.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D012062 Relative Biological Effectiveness The ratio of radiation dosages required to produce identical change based on a formula comparing other types of radiation with that of gamma or roentgen rays. Biological Effectiveness, Relative,Effectiveness, Biologic Relative,Effectiveness, Biological Relative,Relative Biologic Effectiveness,Biologic Effectiveness, Relative,Biologic Relative Effectiveness,Biological Relative Effectiveness,Effectiveness, Relative Biologic,Effectiveness, Relative Biological,Relative Effectiveness, Biologic
D001822 Body Burden The total amount of a chemical, metal or radioactive substance present at any time after absorption in the body of man or animal. Body Burdens,Burden, Body,Burdens, Body
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
December 1998, Physics in medicine and biology,
Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
January 1995, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
August 2009, Technology in cancer research & treatment,
Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
June 2001, Medical physics,
Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
June 2016, Medical physics,
Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
September 1959, Radiation research,
Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
March 2008, Physics in medicine and biology,
Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
March 2005, Physics in medicine and biology,
Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
October 2004, Physics in medicine and biology,
Julius V Turian, and Brett D Smith, and Damian A Bernard, and Katherine L Griem, and James C Chu
May 2003, Physics in medicine and biology,
Copied contents to your clipboard!