A tissue-equivalent phantom series for mammography dosimetry. 2004

William P Argo, and Kathleen Hintenlang, and David E Hintenlang
U.S. Army Medical Department Center and School with duty at University of Florida, 202 Nuclear Sciences Center, P.O. Box 118300, Gainesville, Florida 32611-8300, USA. William.Argo@CEN.AMEDD.ARMY.MIL

A breast tissue-equivalent series (BRTES) of phantoms is manufactured to mimic both the attenuation and the density of the range of glandular and adipose tissue compositions encountered in mammography. The BRTES simulates breast tissues across the range of 20% to 70% glandularity and can be assembled in a variety of thicknesses to represent a compressed breast thickness corresponding to glandularity to simulate various patient demographics. The fabrication techniques are presented, and the physical properties of the completed series of phantoms are described. The BRTES phantoms provide a dosimetry comparison with commonly used phantoms, including the American College of Radiology accreditation phantom and BR12, a 50% glandularity tissue-equivalent material. The comparison shows that the average glandular dose is a strong function of compressed breast thickness and tissue composition. Patient doses measured using photo-timed exposures with the BRTES phantoms can be up to a factor of 3 greater than or less than the doses predicted using conventional phantoms.

UI MeSH Term Description Entries
D008327 Mammography Radiographic examination of the breast. 3D-Mammography,Digital Breast Tomosynthesis,Digital Mammography,X-ray Breast Tomosynthesis,3D Mammography,3D-Mammographies,Breast Tomosyntheses, Digital,Breast Tomosyntheses, X-ray,Breast Tomosynthesis, Digital,Breast Tomosynthesis, X-ray,Digital Breast Tomosyntheses,Digital Mammographies,Mammographies,Mammographies, Digital,Mammography, Digital,X ray Breast Tomosynthesis,X-ray Breast Tomosyntheses
D011857 Radiographic Image Interpretation, Computer-Assisted Computer systems or networks designed to provide radiographic interpretive information. Computer Assisted Radiographic Image Interpretation,Computer-Assisted Radiographic Image Interpretation,Radiographic Image Interpretation, Computer Assisted
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

William P Argo, and Kathleen Hintenlang, and David E Hintenlang
January 1991, Rays,
William P Argo, and Kathleen Hintenlang, and David E Hintenlang
January 1976, Medical physics,
William P Argo, and Kathleen Hintenlang, and David E Hintenlang
May 2023, Radiation protection dosimetry,
William P Argo, and Kathleen Hintenlang, and David E Hintenlang
July 2018, Medical physics,
William P Argo, and Kathleen Hintenlang, and David E Hintenlang
January 1986, Medical physics,
William P Argo, and Kathleen Hintenlang, and David E Hintenlang
October 1983, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine,
William P Argo, and Kathleen Hintenlang, and David E Hintenlang
March 2009, Physics in medicine and biology,
William P Argo, and Kathleen Hintenlang, and David E Hintenlang
December 2009, Journal of applied clinical medical physics,
William P Argo, and Kathleen Hintenlang, and David E Hintenlang
January 1985, Radiologic technology,
William P Argo, and Kathleen Hintenlang, and David E Hintenlang
February 1987, Physics in medicine and biology,
Copied contents to your clipboard!