Solution structures of the core light-harvesting alpha and beta polypeptides from Rhodospirillum rubrum: implications for the pigment-protein and protein-protein interactions. 2005

Zheng-Yu Wang, and Kazutaka Gokan, and Masayuki Kobayashi, and Tsunenori Nozawa
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki-aza, Aoba, Aoba-ku, Sendai 980-8579, Japan. wang@biophys.che.tohoku.ac.jp

We have determined the solution structures of the core light-harvesting (LH1) alpha and beta-polypeptides from wild-type purple photosynthetic bacterium Rhodospirillum rubrum using multidimensional NMR spectroscopy. The two polypeptides form stable alpha helices in organic solution. The structure of alpha-polypeptide consists of a long helix of 32 amino acid residues over the central transmembrane domain and a short helical segment at the N terminus that is followed by a three-residue loop. Pigment-coordinating histidine residue (His29) in the alpha-polypeptide is located near the middle of the central helix. The structure of beta-polypeptide shows a single helix of 32 amino acid residues in the membrane-spanning region with the pigment-coordinating histidine residue (His38) at a position close to the C-terminal end of the helix. Strong hydrogen bonds have been identified for the backbone amide protons over the central helical regions, indicating a rigid property of the two polypeptides. The overall structures of the R.rubrum LH1 alpha and beta-polypeptides are different from those previously reported for the LH1 beta-polypeptide of Rhodobacter sphaeroides, but are very similar to the structures of the corresponding LH2 alpha and beta-polypeptides determined by X-ray crystallography. A model constructed for the structural subunit (B820) of LH1 complex using the solution structures reveals several important features on the interactions between the LH1 alpha and beta-polypeptides. The significance of the N-terminal regions of the two polypeptides for stabilizing both B820 and LH1 complexes, as clarified by many experiments, may be attributed to the interactions between the short N-terminal helix (Trp2-Gln6) of alpha-polypeptide and a GxxxG motif in the beta-polypeptide.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012247 Rhodospirillum rubrum Vibrio- to spiral-shaped phototrophic bacteria found in stagnant water and mud exposed to light.
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D045342 Light-Harvesting Protein Complexes Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX. Antenna Complexes, Light-Harvesting,Light-Harvesting Antenna Complexes,Light-Harvesting Chlorophyll Protein,Light-Harvesting Chlorophyll Protein Complexes,Antenna Complexes, Light Harvesting,Chlorophyll Protein, Light-Harvesting,Complexes, Light-Harvesting Antenna,Complexes, Light-Harvesting Protein,Light Harvesting Antenna Complexes,Light Harvesting Chlorophyll Protein,Light Harvesting Chlorophyll Protein Complexes,Light Harvesting Protein Complexes,Protein Complexes, Light-Harvesting
D019906 Nuclear Magnetic Resonance, Biomolecular NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope. Biomolecular Nuclear Magnetic Resonance,Heteronuclear Nuclear Magnetic Resonance,NMR Spectroscopy, Protein,NMR, Biomolecular,NMR, Heteronuclear,NMR, Multinuclear,Nuclear Magnetic Resonance, Heteronuclear,Protein NMR Spectroscopy,Biomolecular NMR,Heteronuclear NMR,Multinuclear NMR,NMR Spectroscopies, Protein,Protein NMR Spectroscopies,Spectroscopies, Protein NMR,Spectroscopy, Protein NMR

Related Publications

Zheng-Yu Wang, and Kazutaka Gokan, and Masayuki Kobayashi, and Tsunenori Nozawa
January 1980, FEBS letters,
Zheng-Yu Wang, and Kazutaka Gokan, and Masayuki Kobayashi, and Tsunenori Nozawa
May 1993, Journal of molecular biology,
Zheng-Yu Wang, and Kazutaka Gokan, and Masayuki Kobayashi, and Tsunenori Nozawa
January 1986, Analytical biochemistry,
Zheng-Yu Wang, and Kazutaka Gokan, and Masayuki Kobayashi, and Tsunenori Nozawa
October 2001, Biochemistry,
Zheng-Yu Wang, and Kazutaka Gokan, and Masayuki Kobayashi, and Tsunenori Nozawa
November 1977, Biokhimiia (Moscow, Russia),
Copied contents to your clipboard!