Mg2+ and Ca2+ differentially regulate DNA binding and dimerization of DREAM. 2005

Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA.

DREAM (calsenilin/KChIP3) is an EF-hand calcium-binding protein that represses transcription of prodynorphin and c-fos genes. Here we present structural and binding studies on single-site mutants of DREAM designed to disable Ca(2+) binding to each of the functional EF-hands (EF-2: D150N; EF-3: E186Q; and EF-4: E234Q). Isothermal titration calorimetry (ITC) analysis of Ca(2+) binding to the various mutants revealed that, in the absence of Mg(2+), Ca(2+) binds independently and sequentially to EF-3 (DeltaH = -2.4 kcal/mol), EF-4 (DeltaH = +5.2 kcal/mol), and EF-2 (DeltaH = +1 kcal/mol). By contrast, only two Ca(2+) bind to DREAM in the presence of physiological levels of Mg(2+) for both wild-type and D150N, suggesting that EF-2 binds constitutively to Mg(2+). ITC measurements demonstrate that one Mg(2+) binds enthalpically with high affinity (K(d) = 13 mum and DeltaH = -0.79 kcal/mol) and two or more Mg(2+) bind entropically in the millimolar range. Size-exclusion chromatography studies revealed that Mg(2+) stabilizes DREAM as a monomer, whereas Ca(2+) induces protein dimerization. Electrophoretic mobility shift assays indicated that Mg(2+) is essential for sequence-specific binding of DREAM to DNA response elements (DREs) in prodynorphin and c-fos genes. The EF-hand mutants bind specifically to DRE, suggesting they are functionally intact. None of the EF-hand mutants bind DRE at saturating Ca(2+) levels, suggesting that binding of a single Ca(2+) at either EF-3 or EF-4 is sufficient to drive conformational changes that abolish DNA binding. NMR structural analysis indicates that metal-free DREAM adopts a folded yet flexible molten globule-like structure. Both Ca(2+) and Mg(2+) induce distinct conformational changes, which stabilize tertiary structure of DREAM. We propose that Mg(2+) binding at EF-2 may structurally bridge DREAM to DNA targets and that Ca(2+)-induced protein dimerization disrupts DNA binding.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
April 2024, ACS chemical biology,
Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
February 2008, Biochemistry,
Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
November 1970, Biochimica et biophysica acta,
Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
September 1994, Experimental cell research,
Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
June 1982, Biochemical and biophysical research communications,
Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
February 2011, The Journal of biological chemistry,
Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
August 1983, Journal of biochemistry,
Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
July 1983, Biochimica et biophysica acta,
Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
September 2009, Nucleic acids research,
Masanori Osawa, and Alexandra Dace, and Kit I Tong, and Aswani Valiveti, and Mitsuhiko Ikura, and James B Ames
June 1983, The Journal of biological chemistry,
Copied contents to your clipboard!