Functional characterization of two cytochrome P450 monooxygenase genes, P450-1 and P450-4, of the gibberellic acid gene cluster in Fusarium proliferatum (Gibberella fujikuroi MP-D). 2005

S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, Germany.

Gibberella fujikuroi is a species complex with at least nine different biological species, termed mating populations (MPs) A to I (MP-A to MP-I), known to produce many different secondary metabolites. So far, gibberellin (GA) production is restricted to Fusarium fujikuroi (G. fujikuroi MP-C), although at least five other MPs contain all biosynthetic genes. Here, we analyze the GA gene cluster and GA pathway in the closest related species, Fusarium proliferatum (MP-D), and demonstrate that the GA genes share a high degree of sequence homology with the corresponding genes of MP-C. The GA production capacity was restored after integration of the entire GA gene cluster from MP-C, indicating the existence of an active regulation system in F. proliferatum. The results further indicate that one reason for the loss of GA production is the accumulation of several mutations in the coding and 5' noncoding regions of the ent-kaurene oxidase gene, P450-4.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005670 Fusarium A mitosporic Hypocreales fungal genus, various species of which are important parasitic pathogens of plants and a variety of vertebrates. Teleomorphs include GIBBERELLA. Fusariums
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D005874 Gibberella A genus of ascomycetous fungi of the family Hypocreaceae, order Hypocreales including several pathogens of grains and cereals. It is also the source of plant growth regulators such as gibberellin and gibberellic acid. Gibberellas

Related Publications

S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
December 2008, Applied and environmental microbiology,
S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
May 2007, Antonie van Leeuwenhoek,
S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
March 2011, The Journal of antibiotics,
S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
February 2014, Applied microbiology and biotechnology,
S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
February 2007, Journal of basic microbiology,
S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
April 2004, Phytochemistry,
S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
January 2014, Preparative biochemistry & biotechnology,
S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
August 2003, The Journal of biological chemistry,
S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
January 2006, Journal of applied microbiology,
S Malonek, and M C Rojas, and P Hedden, and P Gaskin, and P Hopkins, and B Tudzynski
May 2013, Journal of microbiology and biotechnology,
Copied contents to your clipboard!