Microencapsulation of oils using whey protein/gum Arabic coacervates. 2004

F Weinbreck, and M Minor, and C G de Kruif
NIZO food research, PO Box 20, 6710 BA Ede, The Netherlands. fanny.weinbreck@nizo.nl

Microencapsulating sunflower oil, lemon and orange oil flavour was investigated using complex coacervation of whey protein/gum arabic (WP/GA). At pH 3.0-4.5, WP and GA formed electrostatic complexes that could be successfully used for microencapsulation purposes. The formation of a smooth biopolymer shell around the oil droplets was achieved at a specific pH (close to 4.0) and the payload of oil (i.e. amount of oil in the capsule) was higher than 80%. Small droplets were easier to encapsulate within a coacervate matrix than large ones, which were present in a typical shell/core structure. The stability of the emulsion made of oil droplets covered with coacervates was strongly pH-dependent. At pH 4.0, the creaming rate of the emulsion was much higher than at other pH values. This phenomenon was investigated by carrying out zeta potential measurements on the mixtures. It seemed that, at this specific pH, the zeta potential was close to zero, highlighting the presence of neutral coacervate at the oil/water interface. The influence of pH on the capsule formation was in accordance with previous results on coacervation of whey proteins and gum arabic, i.e. WP/GA coacervates were formed in the same pH window with and without oil and the pH where the encapsulation seemed to be optimum corresponded to the pH at which the coacervate was the most viscous. Finally, to illustrate the applicability of these new coacervates, the release of flavoured capsules incorporated within Gouda cheese showed that large capsules gave stronger release and the covalently cross-linked capsules showed the lowest release, probably because of a tough dense biopolymer wall which was difficult to break by chewing.

UI MeSH Term Description Entries
D008894 Milk Proteins The major protein constituents of milk are CASEINS and whey proteins such as LACTALBUMIN and LACTOGLOBULINS. IMMUNOGLOBULINS occur in high concentrations in COLOSTRUM and in relatively lower concentrations in milk. (Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed, p554) Milk Protein,Protein, Milk,Proteins, Milk
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D010938 Plant Oils Oils derived from plants or plant products. Oils, Plant,Oils, Vegetable,Plant Oil,Vegetable Oil,Vegetable Oils,Oil, Plant,Oil, Vegetable
D002214 Capsules Hard or soft soluble containers used for the oral administration of medicine. Capsule,Microcapsule,Microcapsules
D002611 Cheese A nutritious food consisting primarily of the curd or the semisolid substance formed when milk coagulates. Cheeses
D004339 Drug Compounding The preparation, mixing, and assembly of a drug. (From Remington, The Science and Practice of Pharmacy, 19th ed, p1814). Drug Formulation,Drug Preparation,Drug Microencapsulation,Pharmaceutical Formulation,Compounding, Drug,Formulation, Drug,Formulation, Pharmaceutical,Microencapsulation, Drug,Preparation, Drug
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D004655 Emulsions Colloids formed by the combination of two immiscible liquids such as oil and water. Lipid-in-water emulsions are usually liquid, like milk or lotion. Water-in-lipid emulsions tend to be creams. The formation of emulsions may be aided by amphiphatic molecules that surround one component of the system to form MICELLES. Emulsion
D005421 Flavoring Agents Substances added to foods and medicine to improve the taste. Flavor Additives,Flavor Enhancers,Additive, Flavor,Additives, Flavor,Agent, Flavoring,Agents, Flavoring,Enhancer, Flavor,Enhancers, Flavor,Flavor Additive,Flavor Enhancer,Flavoring Agent
D006170 Gum Arabic Powdered exudate from various Acacia species, especially A. senegal (Leguminosae). It forms mucilage or syrup in water. Gum arabic is used as a suspending agent, excipient, and emulsifier in foods and pharmaceuticals. Acacia Gum,Gum Acacia,Acacia, Gum,Arabic, Gum,Gum, Acacia

Related Publications

F Weinbreck, and M Minor, and C G de Kruif
January 2004, Biomacromolecules,
F Weinbreck, and M Minor, and C G de Kruif
July 2004, Langmuir : the ACS journal of surfaces and colloids,
F Weinbreck, and M Minor, and C G de Kruif
June 2020, International journal of biological macromolecules,
F Weinbreck, and M Minor, and C G de Kruif
July 2024, Food research international (Ottawa, Ont.),
F Weinbreck, and M Minor, and C G de Kruif
September 2010, Colloids and surfaces. B, Biointerfaces,
F Weinbreck, and M Minor, and C G de Kruif
October 2016, International journal of biological macromolecules,
Copied contents to your clipboard!