Metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in mice. 1992

M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
Biomedical Sciences Division, Lawrence Livermore National, Laboratory, Livermore, CA 94551.

The metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP), a heterocyclic amine carcinogen detected in cooked meats, was investigated in mice. In 3-methylcholanthrene-induced mice administered 0.1, 1.0 and 10 mg/kg [14C]PhIP (i.p.), urinary and fecal excretion over 24 h accounted for 16% and 42-56% of the dose respectively. Urinary excretion of unchanged parent compound accounted for only 0.5-0.8% of the administered dose. At all doses, the major urinary metabolite was identified as 4'-(2-amino-1-methylimidazo[4,5-b]pyrid-6-yl)phenyl sulfate and this metabolite comprised approximately 5% of the dose. Uninduced mice excreted greater than 13% of a 10 mg/kg dose as the sulfate conjugate. Urinary excretion of both 2-amino-1-methyl-6-(4'-hydroxy)-phenylimidazo[4,5-b]pyridine (4'-hydroxy-PhIP) and a glucuronide conjugate of 2-hydroxyamino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (N-hydroxy-PhIP) was also higher (4-fold) in uninduced versus induced mice. The decreased urinary excretion of P450-derived metabolites via induction contrasted with increased metabolite formation by hepatic microsomal preparations. 4'-Hydroxy-PhIP and N-hydroxy-PhIP were produced in amounts nearly 7- and 3-fold higher respectively by induced versus uninduced microsomal incubations at 50 microM [3H]PhIP. At concentrations less than 10 microM, PhIP was almost exclusively converted by the induced preparations to an unidentified metabolite that was not retained by the C18 column. This metabolite, which also was formed in incubations with either 4'-hydroxy-PhIP or N-hydroxy-PhIP, was produced by microsomes from uninduced animals at a much slower rate. Covalent binding to microsomal protein in incubations with [3H]PhIP was concentration-dependent and 2- to 4-fold higher in induced than uninduced preparations. Covalent binding in liver and kidney of induced mice administered [14C]PhIP was dose dependent. At 10 mg/kg PhIP, adducts were produced at 1.7-fold higher levels in livers of induced versus uninduced mice, but renal binding was higher in uninduced animals. These studies indicate the importance of cytochrome P450 and other xenobiotic enzymes in the metabolism, disposition and activation of PhIP.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008297 Male Males
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
January 1993, IARC monographs on the evaluation of carcinogenic risks to humans,
M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
September 1999, Cancer letters,
M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
September 1997, Carcinogenesis,
M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
April 2008, Drug metabolism and disposition: the biological fate of chemicals,
M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
May 1997, Mutation research,
M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
September 2005, Chemical research in toxicology,
M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
August 2002, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
July 1990, Carcinogenesis,
M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
September 2002, Mutation research,
M H Buonarati, and M Roper, and C J Morris, and J A Happe, and M G Knize, and J S Felton
June 1991, Carcinogenesis,
Copied contents to your clipboard!