Hepatitis B virus X antigen (HBxAg) and cell cycle control in chronic infection and hepatocarcinogenesis. 2005

Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA. Mark.Feitelson@jefferson.edu <Mark.Feitelson@jefferson.edu>

Hepatitis B and related viruses that infect mammalian hosts encode the "X" protein that has been shown to contribute importantly to the pathogenesis of chronic liver disease (CLD) and to the development of hepatocellular carcinoma (HCC). In a variety of tissue culture systems, hepatitis B virus (HBV) X antigen, or HBxAg, has been shown to trigger apoptosis, while other evidence suggests that HBxAg inhibits apoptosis and stimulates the cell cycle by constitutively activating a number of signaling pathways that are important for hepatocellular growth and survival. These apparently contrasting properties of HBxAg may be associated with differences in the X protein itself, since carboxy-terminal truncated forms of HBxAg appear to be associated with HCC lesions. Alternatively, or in addition, these differences may be due to the cell type, state of cell differentiation, and whether expression occurs in resting or dividing cells. Further, the association between HBxAg expression and chromosomal instability, may also contribute to the apparently contrasting fates of HBxAg positive cells. It is proposed that in many of these systems, the different outcomes of HBxAg expression may be due to the nature of the cellular response to HBxAg, and not due to differences in the fundamental properties of HBxAg, the latter of which promote cell survival, cell cycle progression, and the development of HCC.

UI MeSH Term Description Entries
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005544 Forecasting The prediction or projection of the nature of future problems or existing conditions based upon the extrapolation or interpretation of existing scientific data or by the application of scientific methodology. Futurology,Projections and Predictions,Future,Predictions and Projections
D006515 Hepatitis B virus The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum. Dane Particle,Hepatitis Virus, Homologous Serum,B virus, Hepatitis,Hepatitis B viruses,Particle, Dane,viruses, Hepatitis B
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
August 1992, Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi,
Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
August 2011, Journal of gastroenterology,
Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
June 2016, International journal of molecular sciences,
Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
September 2011, Reviews in medical virology,
Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
June 2010, Orvosi hetilap,
Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
April 1995, Zhonghua nei ke za zhi,
Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
January 1982, Hepatology (Baltimore, Md.),
Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
September 2018, Oncology letters,
Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
August 2007, Hepatology (Baltimore, Md.),
Mark Alan Feitelson, and Helena M G P V Reis, and Jie Liu, and Zhaorui Lian, and Jingbo Pan
May 1992, The Journal of infectious diseases,
Copied contents to your clipboard!