Histochemistry defines a proteoglycan-rich layer in bovine flexor tendon subjected to bending. 2005

K G Vogel, and J A Peters
Department of Biology, The University of New Mexico, Albuquerque, NM 87131, USA. kgvogel@unm.edu

Mid-substance fibrocartilage develops in bovine deep flexor tendon at the point where the tendon wraps under sesamoid bones of the foot and receives transverse compressive loading during locomotion. Fibrocartilage extends several millimeters into the tendon at this location and the proteoglycan-rich tissue stains intensely with Alcian blue. Using histochemical techniques we demonstrate the presence of aggrecan, type VI collagen, and hyaluronic acid in the extracellular matrix of this region of tendon. Biglycan staining was localized to the cells, however. Adjacent to the fibrocartilage, at the outer curvature of the tendon as it bends, the tissue resembles typical tensile tendon with dense bundles of linearly arranged collagen. Longitudinal sections revealed discrete layers of Alcian blue-stained material between the collagen bundles. We demonstrate that these layers of loose matrix also contain aggrecan, type VI collagen, and hyaluronic acid. However, the dense collagen bundles of this region are negative for these components. Transverse sections of tendon in the area adjacent to fibrocartilage show a distinct Alcian blue-stained structure surrounding vascular elements at the point where several fiber bundles come together. This is concluded to be the same structure as the Alcian blue-stained layers seen in longitudinal sections. These observations suggest that proteoglycan-rich matrices in tendon subjected to mechanical loading other than pure tension may serve multiple roles. Such matrices can not only provide compressive stiffness and separate and lubricate collagen bundles that move relative to each other, but may also protect the integrity of vasculature in tendon subjected to bending and shear.

UI MeSH Term Description Entries
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004548 Elasticity Resistance and recovery from distortion of shape.
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D006820 Hyaluronic Acid A natural high-viscosity mucopolysaccharide with alternating beta (1-3) glucuronide and beta (1-4) glucosaminidic bonds. It is found in the UMBILICAL CORD, in VITREOUS BODY and in SYNOVIAL FLUID. A high urinary level is found in PROGERIA. Amo Vitrax,Amvisc,Biolon,Etamucine,Healon,Hyaluronan,Hyaluronate Sodium,Hyvisc,Luronit,Sodium Hyaluronate,Acid, Hyaluronic,Hyaluronate, Sodium,Vitrax, Amo
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D013710 Tendons Fibrous bands or cords of CONNECTIVE TISSUE at the ends of SKELETAL MUSCLE FIBERS that serve to attach the MUSCLES to bones and other structures. Endotenon,Epotenon,Tendons, Para-Articular,Tendons, Paraarticular,Endotenons,Epotenons,Para-Articular Tendon,Para-Articular Tendons,Paraarticular Tendon,Paraarticular Tendons,Tendon,Tendon, Para-Articular,Tendon, Paraarticular,Tendons, Para Articular
D016326 Extracellular Matrix Proteins Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ). Extracellular Matrix Protein,Matrix Protein, Extracellular,Matrix Proteins, Extracellular,Protein, Extracellular Matrix,Proteins, Extracellular Matrix

Related Publications

K G Vogel, and J A Peters
August 1982, Biochemical and biophysical research communications,
K G Vogel, and J A Peters
January 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
K G Vogel, and J A Peters
June 2014, Hand (New York, N.Y.),
K G Vogel, and J A Peters
January 1988, Connective tissue research,
K G Vogel, and J A Peters
June 1994, Journal of biomedical materials research,
K G Vogel, and J A Peters
October 1999, Clinical orthopaedics and related research,
K G Vogel, and J A Peters
October 1974, The Journal of the American Osteopathic Association,
Copied contents to your clipboard!