Phenotype-based treatment of dietary obesity: differential effects of fenofibrate in obesity-prone and obesity-resistant rats. 2005

Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
Monell Chemical Senses Center, Philadelphia, PA 19104, USA. hongji@monell.org

High-fat diets (HFDs) promote hyperphagia and adiposity in animals and human beings. To test the hypothesis that limitations on fat oxidation underlie this propensity for diet-induced obesity, rats were treated with fenofibrate, which enhances fat oxidation mainly in liver by inducing expression of enzymes and proliferation of organelles involved in fatty acid oxidation. Male Sprague-Dawley rats were fed a HFD (42% fat calorie) for 2 weeks. Rats ranked in the top and bottom thirds for weight gain during this feeding period were designated as obesity prone (OP) and obesity resistant (OR), respectively. Fenofibrate was added to the HFD (0.025% wt/wt) for half of the OP and OR rats. During the next 10 days, fenofibrate treatment significantly (P<.05) reduced food intake, weight gain, feed efficiency, and adiposity in OP rats to levels seen in control OR rats, but had no such effects in OR rats. Fenofibrate treatment increased whole-body fatty acid oxidation, and in liver, the expression of carnitine palmitoyl transferase I only in OP rats, but enhanced expression of acyl-CoA oxidase in both OP and OR rats. Restricting food intake of OP rats to levels seen in rats given fenofibrate similarly reduced weight gain but had little effect on weight of fat pads. Treatment with the daily dosage of fenofibrate given as a bolus did not produce a conditioned flavor aversion. These results suggest that enhancement of mitochondrial fatty acid oxidation in liver may be an effective phenotype-based treatment strategy for dietary obesity.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011345 Fenofibrate An antilipemic agent which reduces both CHOLESTEROL and TRIGLYCERIDES in the blood. Procetofen,Antara Micronized Procetofen,Apo-Feno-Micro,Apo-Fenofibrate,CiL,Controlip,Fenobeta,Fenofanton,Fenofibrat AL,Fenofibrat AZU,Fenofibrat AbZ,Fenofibrat FPh,Fenofibrat Heumann,Fenofibrat Hexal,Fenofibrat Stada,Fenofibrat-ratiopharm,Fénofibrate Debat,Fénofibrate MSD,Gen-Fenofibrate,LF-178,Lipanthyl,Lipantil,Liparison,Lipidil,Lipidil-Ter,Livesan,Lofibra,MTW-Fenofibrat,Normalip,Novo-Fenofibrate,Nu-Fenofibrate,PMS-Fenofibrate Micro,Phenofibrate,Procetofene,Secalip,Supralip,Tricor,durafenat,fenofibrat von ct,AZU, Fenofibrat,Apo Feno Micro,Apo Fenofibrate,Debat, Fénofibrate,Fenofibrat ratiopharm,Gen Fenofibrate,Heumann, Fenofibrat,Hexal, Fenofibrat,LF 178,LF178,Lipidil Ter,MTW Fenofibrat,Micronized Procetofen, Antara,Novo Fenofibrate,Nu Fenofibrate,PMS Fenofibrate Micro,Procetofen, Antara Micronized,Stada, Fenofibrat
D001823 Body Composition The relative amounts of various components in the body, such as percentage of body fat. Body Compositions,Composition, Body,Compositions, Body
D002334 Carnitine O-Palmitoyltransferase An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21. Carnitine Palmitoyltransferase,CPT II,Carnitine Acyltransferase I,Carnitine Palmitoyltransferase I,Carnitine Palmitoyltransferase II,Palmitoylcarnitine Transferase,Palmitylcarnitine Acyltransferase,Acyltransferase I, Carnitine,Acyltransferase, Palmitylcarnitine,Carnitine O Palmitoyltransferase,II, Carnitine Palmitoyltransferase,O-Palmitoyltransferase, Carnitine,Palmitoyltransferase I, Carnitine,Palmitoyltransferase II, Carnitine,Palmitoyltransferase, Carnitine,Transferase, Palmitoylcarnitine
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes

Related Publications

Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
November 2006, American journal of physiology. Endocrinology and metabolism,
Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
June 1999, Physiology & behavior,
Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
October 2012, Nutrition & metabolism,
Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
July 2010, Medical science monitor : international medical journal of experimental and clinical research,
Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
April 2006, International journal of obesity (2005),
Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
February 2023, Journal of neurochemistry,
Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
October 2020, Chemical senses,
Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
January 2010, Brain research,
Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
December 1990, The American journal of physiology,
Hong Ji, and Lisa V Outterbridge, and Mark I Friedman
June 1993, The American journal of physiology,
Copied contents to your clipboard!