Relationship of VP-16 to the classical multidrug resistance phenotype. 1992

M Sehested, and E Friche, and P B Jensen, and E J Demant
Department of Pathology, Sundby Hospital, Copenhagen, Denmark.

The classical multidrug resistance (MDR) phenotype is characterized by cross-resistance between a number of chemically unrelated drugs due to an increased efflux across the plasma membrane via a P-glycoprotein-mediated mechanism. The epipodophyllotoxin derivatives etoposide (VP-16) and teniposide (VM-26) are usually included among the drugs recognized by this MDR phenotype, and the MDR EHR2/DNR cell line is greater than 50-fold cross-resistant to VP-16. The steady-state accumulation of VP-16 in EHR2/DNR cells is only half that of wild-type EHR2 cells, and deprivation of energy by sodium azide surprisingly increased accumulation to a similar extent in both sublines. Efflux was rapid (halflife of 32-35 s) and similar in both sublines, while initial influx was markedly lower in the resistant cells. The temperature coefficients over 10 degrees C for VP-16 in- and efflux indicated passive transport in both sublines. In agreement with this finding, up to 10-fold molar excess (50 microM) VM-26 had no effect on VP-16 accumulation in MDR cells. VP-16 at a 100-fold molar excess inhibited azidopine photoaffinity labeling of P-glycoprotein by only 30% and vincristine binding to plasma membrane vesicles from EHR/DNR cells by 45%. However, VP-16 itself did not differentially bind to plasma membrane vesicles from EHR2 and EHR2/DNR cells. Finally, neither VP-16 accumulation nor cytotoxicity in EHR2/DNR cells were increased to the same degree as for daunorubicin and vincristine by verapamil, and the modulation was similar in wild-type and resistant cells. Thus, although VP-16 may be a substrate for P-glycoprotein, its other transport characteristics such as rapid diffusion and sensitivity to membrane perturbation in wild-type cells lessen any effect of P-glycoprotein-mediated efflux, resulting in a lack of differential modulation by verapamil. These results may be considered when planning clinical trials involving MDR modulators and epipodophyllotoxin derivatives.

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011136 Polysorbates Sorbitan mono-9-octadecanoate poly(oxy-1,2-ethanediyl) derivatives; complex mixtures of polyoxyethylene ethers used as emulsifiers or dispersing agents in pharmaceuticals. Polysorbate,Polysorbate 20,Polysorbate 80,Sorbitan Derivatives,Tween,Tweens,PSML,Polyoxyethylene Sorbitan Monolaurate,Tween 20,Tween 60,Tween 80,Tween 81,Tween 85,20s, Polysorbate,20s, Tween,60s, Tween,80s, Polysorbate,80s, Tween,81s, Tween,85s, Tween,Derivative, Sorbitan,Derivatives, Sorbitan,Monolaurate, Polyoxyethylene Sorbitan,Monolaurates, Polyoxyethylene Sorbitan,PSMLs,Polyoxyethylene Sorbitan Monolaurates,Polysorbate 20s,Polysorbate 80s,Sorbitan Derivative,Sorbitan Monolaurate, Polyoxyethylene,Sorbitan Monolaurates, Polyoxyethylene,Tween 20s,Tween 60s,Tween 80s,Tween 81s,Tween 85s
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003630 Daunorubicin A very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of LEUKEMIA and other NEOPLASMS. Daunomycin,Rubidomycin,Rubomycin,Cerubidine,Dauno-Rubidomycine,Daunoblastin,Daunoblastine,Daunorubicin Hydrochloride,NSC-82151,Dauno Rubidomycine,Hydrochloride, Daunorubicin,NSC 82151,NSC82151
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

M Sehested, and E Friche, and P B Jensen, and E J Demant
January 1999, Anticancer research,
M Sehested, and E Friche, and P B Jensen, and E J Demant
November 1987, Cancer research,
M Sehested, and E Friche, and P B Jensen, and E J Demant
June 2003, FEBS letters,
M Sehested, and E Friche, and P B Jensen, and E J Demant
December 1988, British journal of cancer,
M Sehested, and E Friche, and P B Jensen, and E J Demant
May 1995, Archives of biochemistry and biophysics,
M Sehested, and E Friche, and P B Jensen, and E J Demant
September 1990, Experimental hematology,
M Sehested, and E Friche, and P B Jensen, and E J Demant
December 1989, The Tohoku journal of experimental medicine,
M Sehested, and E Friche, and P B Jensen, and E J Demant
January 1988, Journal of the Association of Pediatric Oncology Nurses,
Copied contents to your clipboard!