Gastrointestinal tract innervation of the mouse: afferent regeneration and meal patterning after vagotomy. 2005

Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
Dept. of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, USA. powleytl@psych.purdue.edu

Mice, with the variety of genotypes they provide, should be particularly useful for studies of growth factors and gene products in regeneration of autonomic pathways such as the vagus nerve. To provide a foundation for examinations of mouse vagal reorganization, two experiments assessed the rate, extent, and accuracy of afferent reinnervation of the stomach after vagotomy and related these patterns to feeding behavior. In experiment 1, the pattern of afferent regrowth into the gut after unilateral truncal vagotomy was characterized by labeling of these afferents with wheat germ agglutinin-horseradish peroxidase and Micro-Ruby. Regenerating neurites had reached and, in some cases, already reinnervated the stomach by 4 wk after axotomy. By 8 wk, regrowth was more extensive, and many fibers had redifferentiated terminals in the smooth muscle. By 16 wk, vagal projections had reached or exceeded normal density in the corpus, density in the forestomach was still reduced, and regrowth in the antrum was minimal. At all time points, not only appropriate terminals, but also growth cones and aberrant endings, were observed. In experiment 2, meal patterns of vagotomized mice were evaluated using a solid diet over the period of regeneration; cholecystokinin suppression of a liquid meal after unilateral and bilateral truncal vagotomies was also evaluated. Unilaterally, as well as bilaterally, vagotomized animals ate smaller and more frequent meals. These disturbed patterns became more pronounced in the first 8 wk after vagotomy, during regeneration. Cholecystokinin inhibition of intake was attenuated by bilateral, but not unilateral, vagotomy. Overall, the spatial and temporal patterns of structural and functional changes observed during regeneration verify that the mouse provides a useful preparation for examining the control of vagal plasticity.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014628 Vagotomy The interruption or removal of any part of the vagus (10th cranial) nerve. Vagotomy may be performed for research or for therapeutic purposes. Vagotomies
D014630 Vagus Nerve The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx). Cranial Nerve X,Pneumogastric Nerve,Tenth Cranial Nerve,Nerve X,Nervus Vagus,Cranial Nerve, Tenth,Cranial Nerves, Tenth,Nerve X, Cranial,Nerve Xs,Nerve, Pneumogastric,Nerve, Tenth Cranial,Nerve, Vagus,Nerves, Pneumogastric,Nerves, Tenth Cranial,Nerves, Vagus,Pneumogastric Nerves,Tenth Cranial Nerves,Vagus Nerves,Vagus, Nervus
D041981 Gastrointestinal Tract Generally refers to the digestive structures stretching from the MOUTH to ANUS, but does not include the accessory glandular organs (LIVER; BILIARY TRACT; PANCREAS). Digestive Tract,GI Tract,Digestive Tracts,GI Tracts,Gastrointestinal Tracts

Related Publications

Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
January 1986, Progress in brain research,
Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
January 1961, Fiziolohichnyi zhurnal,
Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
March 2011, The Journal of comparative neurology,
Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
January 1978, Archives d'anatomie microscopique et de morphologie experimentale,
Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
July 1997, The Journal of comparative neurology,
Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
January 1984, Acta chirurgica Scandinavica,
Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
January 1979, International review of cytology,
Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
August 2020, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
January 1978, Advances in experimental medicine and biology,
Terry L Powley, and Michael M Chi, and Elizabeth A Baronowsky, and Robert J Phillips
September 1971, Arkhiv anatomii, gistologii i embriologii,
Copied contents to your clipboard!