Caffeine induces differential cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic agonists. 2005

Raka Jain, and Stephen G Holtzman
National Drug Dependence Treatment Centre, Department of Psychiatry, All India Institute of Medical Sciences, New Delhi-110029, India. rakajain2001@yahoo.com

The purpose of this study was to determine if caffeine induces cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic drugs that act through distinct mechanisms (e.g., release, uptake inhibition, direct activation of dopamine D(1)- or D(2)-family receptors). Rats were trained to discriminate 1.0 mg/kg d-amphetamine from saline in a two-choice discrete-trial procedure. Stimulus-generalization curves were generated by cumulative dosing for d-amphetamine (0.1-1.0 mg/kg), methylphenidate (0.3-5.6 mg/kg), SKF 81297 (0.3-3.0 mg/kg), and R-(-)-propylnorapomorphine (NPA; 0.001-1.78 mg/kg), as well as for caffeine (3.0-56 mg/kg); curves were re-determined after twice daily injections of caffeine (30 mg/kg) for 3.5 days. The rats generalized dose dependently to the four dopaminergic drugs, but only to a limited extent to caffeine. Twice daily injections of caffeine induced significant cross tolerance (i.e., increased ED(50)) to the amphetamine-like discriminative effects of methylphenidate and SKF 81297, attenuated non-significantly the effects of NPA, and did not alter the effects of amphetamine. Thus, caffeine produces differential cross tolerance to the amphetamine-like discriminative effects of dopaminergic drugs, a phenomenon in which the dopamine D(1) receptor appears to have an important role.

UI MeSH Term Description Entries
D008297 Male Males
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002755 Choice Behavior The act of making a selection among two or more alternatives, usually after a period of deliberation. Approach Behavior,Approach Behaviors,Behavior, Approach,Behavior, Choice,Behaviors, Approach,Behaviors, Choice,Choice Behaviors
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine
D000697 Central Nervous System Stimulants A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here. Analeptic,Analeptic Agent,Analeptic Drug,Analeptics,CNS Stimulant,CNS Stimulants,Central Nervous System Stimulant,Central Stimulant,Analeptic Agents,Analeptic Drugs,Central Stimulants,Agent, Analeptic,Agents, Analeptic,Drug, Analeptic,Drugs, Analeptic,Stimulant, CNS,Stimulant, Central,Stimulants, CNS,Stimulants, Central
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001058 Apomorphine A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use. Apokinon,Apomorphin-Teclapharm,Apomorphine Chloride,Apomorphine Hydrochloride,Apomorphine Hydrochloride Anhydrous,Apomorphine Hydrochloride, Anhydrous,Apomorphine Hydrochloride, Hemihydrate,Britaject,Apomorphin Teclapharm

Related Publications

Raka Jain, and Stephen G Holtzman
March 1981, Neuropharmacology,
Raka Jain, and Stephen G Holtzman
June 1992, Behavioural pharmacology,
Raka Jain, and Stephen G Holtzman
March 2014, The Journal of pharmacology and experimental therapeutics,
Raka Jain, and Stephen G Holtzman
January 1988, Psychopharmacology,
Raka Jain, and Stephen G Holtzman
January 1993, Molecular and chemical neuropathology,
Raka Jain, and Stephen G Holtzman
May 1994, Psychopharmacology,
Raka Jain, and Stephen G Holtzman
April 1996, The Journal of pharmacology and experimental therapeutics,
Raka Jain, and Stephen G Holtzman
February 1998, Pharmacology, biochemistry, and behavior,
Raka Jain, and Stephen G Holtzman
May 1991, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!