CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. 2005

Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 32/Rm K-817, New York, NY 10021, USA.

A proportion of cancer patients naturally develop CD4+ T-helper type 1 (Th1) cell responses to NY-ESO-1 that correlate with anti-NY-ESO-1 serum antibodies. To address the role of T-cell regulation in the control of spontaneous tumor immunity, we analyzed NY-ESO-1-specific Th1 cell induction before or after depletion of CD4+CD25+ T cells in vitro. While Th1 cells were generated in the presence of CD25+ T cells in cancer patients seropositive for NY-ESO-1, seronegative cancer patients and healthy donors required CD25+ T-cell depletion for in vitro induction of NY-ESO-1-specific Th1 cells. In vitro, newly generated NY-ESO-1-specific Th1 cells were derived from naive precursors, whereas preexisting memory populations were detectable exclusively in patients with NY-ESO-1 antibody. Memory populations were less sensitive than naive populations to CD4+CD25+ regulatory T cells. We propose that CD4+CD25+ regulatory T cells are involved in the generation and regulation of NY-ESO-1-specific antitumor immunity.

UI MeSH Term Description Entries
D007156 Immunologic Memory The altered state of immunologic responsiveness resulting from initial contact with antigen, which enables the individual to produce antibodies more rapidly and in greater quantity in response to secondary antigenic stimulus. Immune Memory,Immunological Memory,Memory, Immunologic,Immune Memories,Immunologic Memories,Immunological Memories,Memory, Immune,Memory, Immunological
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000912 Antibodies, Neoplasm Immunoglobulins induced by antigens specific for tumors other than the normally occurring HISTOCOMPATIBILITY ANTIGENS. Neoplasm Antibodies,Tumor Antibodies,Antibodies, Tumor
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor
D015375 Receptors, Interleukin-2 Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN. IL-2 Receptors,Interleukin-2 Receptor,Interleukin-2 Receptors,Receptors, IL-2,Receptors, T-Cell Growth Factor,T-Cell Growth Factor Receptors,IL-2 Receptor,IL2 Receptor,IL2 Receptors,Interleukin 2 Receptor,Receptor, TCGF,T-Cell Growth Factor Receptor,TCGF Receptor,TCGF Receptors,IL 2 Receptor,IL 2 Receptors,Interleukin 2 Receptors,Receptor, IL-2,Receptor, IL2,Receptor, Interleukin 2,Receptor, Interleukin-2,Receptors, IL 2,Receptors, IL2,Receptors, Interleukin 2,Receptors, T Cell Growth Factor,Receptors, TCGF,T Cell Growth Factor Receptor,T Cell Growth Factor Receptors
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D016022 Case-Control Studies Comparisons that start with the identification of persons with the disease or outcome of interest and a control (comparison, referent) group without the disease or outcome of interest. The relationship of an attribute is examined by comparing both groups with regard to the frequency or levels of outcome over time. Case-Base Studies,Case-Comparison Studies,Case-Referent Studies,Matched Case-Control Studies,Nested Case-Control Studies,Case Control Studies,Case-Compeer Studies,Case-Referrent Studies,Case Base Studies,Case Comparison Studies,Case Control Study,Case Referent Studies,Case Referrent Studies,Case-Comparison Study,Case-Control Studies, Matched,Case-Control Studies, Nested,Case-Control Study,Case-Control Study, Matched,Case-Control Study, Nested,Case-Referent Study,Case-Referrent Study,Matched Case Control Studies,Matched Case-Control Study,Nested Case Control Studies,Nested Case-Control Study,Studies, Case Control,Studies, Case-Base,Studies, Case-Comparison,Studies, Case-Compeer,Studies, Case-Control,Studies, Case-Referent,Studies, Case-Referrent,Studies, Matched Case-Control,Studies, Nested Case-Control,Study, Case Control,Study, Case-Comparison,Study, Case-Control,Study, Case-Referent,Study, Case-Referrent,Study, Matched Case-Control,Study, Nested Case-Control

Related Publications

Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
May 2004, Journal of immunology (Baltimore, Md. : 1950),
Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
June 2002, European journal of immunology,
Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
October 2015, International immunopharmacology,
Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
March 2005, Proceedings of the National Academy of Sciences of the United States of America,
Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
October 2004, Proceedings of the National Academy of Sciences of the United States of America,
Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
March 2008, Journal of leukocyte biology,
Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
August 2005, Immunology,
Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
May 2012, Blood,
Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
May 2005, Blood,
Hiroyoshi Nishikawa, and Elke Jäger, and Gerd Ritter, and Lloyd J Old, and Sacha Gnjatic
July 2003, The Journal of experimental medicine,
Copied contents to your clipboard!