Visualization of stress-responsive inhibitory circuits in the GAD65-eGFP transgenic mice. 2005

Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, P.O. Box 67, H-1450 Budapest, Hungary. bali@koki.hu

Here, we have revealed that a subset of GABAergic neurons in the mouse brain became activated during systemic stress response. Stress-induced expression of immediate early gene product c-Fos, as a marker of neuronal activation was visualized in a transgenic mouse line expressing enhanced green fluorescent protein (eGFP) under the control of the regulatory region of mouse glutamic acid decarboxylase (GAD) 65 gene. In most GABAergic regions egfp transgene expression corresponded to acknowledged distribution of GABA neurons. Ether inhalation, as a strong systemic stressor induced c-Fos expression throughout the stress-related circuit, and did not affect the distribution and expression of the eGFP-transgene. Stress provoked strong neuronal activation in the piriform cortex, midline thalamic nuclei, lateral septum (LS), bed nucleus of the stria terminalis (BNST), and in parvocellular part of the hypothalamic paraventricular nucleus (PVN) as revealed by c-Fos immunfluorescence. Cells in the LS, BNST, and AHA including the subparaventricular zone (SPVZ) displayed significant eGFP/c-Fos co-localization, revealing stress-responsive GABAergic neurons. None of the stress-activated neurons within the medial parvocellular subdivision of the PVN were GABAergic. Our present results suggest that stress-recruited GABAergic neuron populations are preferentially located in distinct limbic and hypothalamic regions and these neurons might be involved in an inhibitory mechanism that counteract the endocrine, autonomic and behavioral aspects of the stress response. Furthermore, the present GAD65-eGFP transgenic model seems to be a relevant tool to analyze inhibitory control of the central stress circuit at single cell level.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012149 Restraint, Physical Use of a device for the purpose of controlling movement of all or part of the body. Splinting and casting are FRACTURE FIXATION. Immobilization, Physical,Physical Restraint,Physical Immobilization,Physical Restraints,Restraints, Physical
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt

Related Publications

Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
July 2007, Brain and nerve = Shinkei kenkyu no shinpo,
Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
August 2005, Journal of neuroscience research,
Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
January 2008, Regulatory peptides,
Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
February 2001, Molecular and cellular neurosciences,
Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
March 2003, The Journal of comparative neurology,
Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
April 2014, Genesis (New York, N.Y. : 2000),
Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
August 2012, Genesis (New York, N.Y. : 2000),
Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
July 2007, Neuroscience letters,
Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
March 2011, Journal of neurophysiology,
Balázs Bali, and Ferenc Erdélyi, and Gábor Szabó, and Krisztina J Kovács
June 2011, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology,
Copied contents to your clipboard!