Induction of DNA synthesis by fibroblast growth factor in temperature-sensitive cell-cycle mutants of rat 3Y1 fibroblasts arrested at restrictive temperature. 1992

Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
Department of Virology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Four temperature-sensitive cell-cycle mutants of rat 3Y1 clonal fibroblasts representing separate complementation groups (3Y1tsD123, 3Y1tsF121, 3Y1tsG125 and 3Y1tsH203) are arrested at restrictive temperature, primarily with a G1-phase DNA content (temperature arrest). We examined various factors affecting signal transduction for activity which induces DNA synthesis at the restrictive temperature when added to the temperature-arrested cultures of these mutants. The factors examined were theophylline, dibutyryl cyclic AMP, cholera toxin (CT), dibutyryl cyclic GMP, sodium nitroprusside, phorbol 12-myristate 13-acetate, 1-oleoyl 2-acetylglycerol, bombesin, vasopressin, basic fibroblast growth factor (FGF), platelet-derived growth factor, A23187, monensin, epidermal growth factor (EGF), insulin and fetal calf serum (FCS). None of these factors induced DNA synthesis in 3Y1tsH203. In one mutant (3Y1ts121), FGF, EGF and FCS individually induced DNA synthesis. In the other 2 mutants (3Y1tsD123 and 3Y1tsG125), FGF and CT individually induced DNA synthesis. The FGF-induced DNA synthesis was suppressed by islet-activating protein (IAP) in 3Y1tsD123 and 3Y1tsG125, but not in 3Y1tsF121. The CT-induced DNA synthesis was also suppressed by IAP, as previously shown. When temperature-arrested cultures were shifted to a permissive temperature, all 4 mutants initiated DNA synthesis in the presence of IAP. These results suggest that (1) a cell can prepare for the initiation of DNA synthesis by using several independent signal transduction pathways, and (2) in a given situation, the cell uses a particular pathway because of its availability, which depends on the culture conditions.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2

Related Publications

Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
September 1989, Journal of cell science,
Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
February 1985, Journal of cellular physiology,
Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
August 1990, Cell structure and function,
Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
November 1987, Experimental cell research,
Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
April 1986, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
January 1976, Experimental cell research,
Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
August 1989, Cell structure and function,
Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
September 1995, Human cell,
Y Umeno, and A Okuda, and H Shimura, and K Onodera, and G Kimura
September 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!