Do rat cardiac myocytes release ATP on contraction? 2005

Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität, Düsseldorf, Germany. stefanie.goedecke@uni-duesseldorf.de

ATP is released by numerous cell types in response to mechanical strain. It then acts as a paracrine or autocrine signaling molecule, inducing a variety of biological responses. In this work, we addressed the question whether mechanical force acting on the membranes of contracting cardiomyocytes during periodic longitudinal shortening can stimulate the release of ATP. Electrically stimulated isolated adult rat cardiomyocytes as well as spontaneously contracting mouse cardiomyocytes derived from embryonic stem (ES) cells were assayed for ATP release with the use of luciferase and a sensitive charge-coupled device camera. Sensitivity of soluble luciferase in the supernatant of cardiomyocytes was 100 nM ATP, which is approximately 10-fold below the EC(50) values for most purinergic receptors expressed in the heart (1.5-20 microM). Light intensities were not different between resting or contracting adult rat cardiomyocytes. Similar results were obtained with ES-cell-derived contracting mouse cardiomyocytes. ATP release was measurable only from obviously damaged or permeabilized cells. To increase selectivity and sensitivity of ATP detection we have targeted a recombinant luciferase to the sarcolemmal membrane using a wheat germ agglutinin-IgG linker. Contraction of labeled adult rat cardiomyocytes was not associated with measurable bioluminescence. However, when human umbilical vein endothelial cells were targeted with membrane-bound luciferase, shear stress-induced ATP release could be clearly detected, demonstrating the sensitivity of the detection method. In the present study, we did not detect ATP release from contracting cardiomyocytes on the single cell level, despite adequate sensitivity of the detection system. Thus deformation of the contracting cardiomyocyte is not a key stimulus for the release of cellular ATP.

UI MeSH Term Description Entries
D008853 Microscopy The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe. Compound Microscopy,Hand-Held Microscopy,Light Microscopy,Optical Microscopy,Simple Microscopy,Hand Held Microscopy,Microscopy, Compound,Microscopy, Hand-Held,Microscopy, Light,Microscopy, Optical,Microscopy, Simple
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell

Related Publications

Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
January 1995, Advances in experimental medicine and biology,
Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
July 2001, The Journal of physiology,
Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
December 1996, Circulation research,
Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
October 2000, Hypertension (Dallas, Tex. : 1979),
Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
November 2011, Journal of molecular and cellular cardiology,
Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
July 2000, American journal of physiology. Cell physiology,
Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
October 1994, Proceedings of the National Academy of Sciences of the United States of America,
Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
January 1998, The American journal of physiology,
Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
May 2001, The Journal of physiology,
Stefanie Gödecke, and Thomas Stumpe, and Hilmar Schiller, and Hans-J Schnittler, and Jürgen Schrader
July 2010, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!