Upregulation of LPS-induced chemokine KC expression by 15-deoxy-delta12,14-prostaglandin J2 in mouse peritoneal macrophages. 2005

Hyo Y Kim, and Hyun K Kim, and Jae R Kim, and Hee S Kim
Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea.

15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) was initially identified as a high affinity natural ligand for the peroxisome proliferator-activated receptor (PPAR)-gamma. Recent studies have shown that it has a potent anti-inflammatory effect by attenuating the expression of proinflammatory mediators in activated macrophages, mainly through the inhibition of nuclear factor (NF)-kappaB-dependent transcription of inflammatory genes. In this study, we investigated the synergistic effect of 15d-PGJ(2) on the expression of LPS-induced chemokine KC mRNA in mouse peritoneal macrophages. The time course of KC mRNA expression in cells stimulated with 15d-PGJ(2) plus LPS simultaneously (15d-PGJ(2)/LPS) showed similar patterns to the cells treated with LPS alone, and 15d-PGJ(2) had no effect on the stability of LPS-induced KC mRNA expression. Although NF-kappaB activity in cells treated with LPS was augmented by 15d-PGJ(2), pyrrolidone dithiocarbamate (PDTC) did not block the synergistic effect of 15d-PGJ(2) on LPS-induced KC mRNA expression. However, the synergistic effect of 15d-PGJ(2) was markedly inhibited when the macrophages were treated with a inhibitor of the mitogen-activated protein kinase (MAPK) signalling pathway, 2'-amino-3'-methoxyflavine (PD98059). Therefore, the mechanism of synergistic action of 15d-PGJ(2) on the expression of LPS-induced KC mRNA in mouse peritoneal macrophages is possibly related to the MAPK signalling pathway, not to NF-kappaB activation. These data may contribute to unravelling some of the different mechanisms contrary to the anti-inflammatory effect of 15d-PGJ(2).

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007155 Immunologic Factors Biologically active substances whose activities affect or play a role in the functioning of the immune system. Biological Response Modifier,Biomodulator,Immune Factor,Immunological Factor,Immunomodulator,Immunomodulators,Biological Response Modifiers,Biomodulators,Factors, Immunologic,Immune Factors,Immunological Factors,Modifiers, Biological Response,Response Modifiers, Biological,Factor, Immune,Factor, Immunological,Factors, Immune,Factors, Immunological,Modifier, Biological Response,Response Modifier, Biological
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme

Related Publications

Hyo Y Kim, and Hyun K Kim, and Jae R Kim, and Hee S Kim
November 2009, Free radical biology & medicine,
Hyo Y Kim, and Hyun K Kim, and Jae R Kim, and Hee S Kim
December 2001, Prostaglandins & other lipid mediators,
Hyo Y Kim, and Hyun K Kim, and Jae R Kim, and Hee S Kim
November 2007, Molecular pharmacology,
Hyo Y Kim, and Hyun K Kim, and Jae R Kim, and Hee S Kim
June 2002, Kidney international,
Hyo Y Kim, and Hyun K Kim, and Jae R Kim, and Hee S Kim
October 2004, Prostaglandins & other lipid mediators,
Hyo Y Kim, and Hyun K Kim, and Jae R Kim, and Hee S Kim
November 2005, Biochemical and biophysical research communications,
Hyo Y Kim, and Hyun K Kim, and Jae R Kim, and Hee S Kim
February 2006, Urology,
Hyo Y Kim, and Hyun K Kim, and Jae R Kim, and Hee S Kim
January 2009, Journal of thrombosis and haemostasis : JTH,
Copied contents to your clipboard!