Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers. 2005

K A P Edman
Department of Physiological Sciences, Biomedical Centre, F11, University of Lund, S-221 84 Lund, Sweden. paul.edman@farm.lu.se

Single fibers, 25-40 microm wide and 0.5-0.7 mm long, were isolated from the flexor digitorum brevis muscle of the mouse. Force and movement were recorded (21-27 degrees C) from the fiber as a whole and, in certain experiments, from a short marked segment that was held at constant length by feedback control. The maximum tetanic force, 368+/-57 kN/m2 (N = 10), was not significantly different from that recorded in frog muscle fibers at equal temperature. However, the rising phase of the tetanus was considerably slower in the mammalian fibers, 202+/-20 ms (N = 17) being required to reach 90% of maximum tetanic force as compared with 59+/-4 ms (N = 20) in the frog muscle fibers. Similar to the situation in frog muscle fibers, the force-velocity relation exhibited two distinct curvatures located on either side of a breakpoint near 80% of the isometric force. Maximum speed of shortening was 4.0+/-0.3 fiber lengths s(-1) (N = 6). The relationship between tetanic force and sarcomere length was studied between 1.5 and 4.0 microm sarcomere spacings, based on length-clamp recordings that were free of 'tension creep'. There was a flat maximum (plateau) of the length-tension relation between approximately 2.0 and 2.4 microm sarcomere lengths. The descending limb of the length-tension relation (linear regression) intersected the length axis (zero force) at 3.88 microm and reached maximum force at 2.40 microm sarcomere length. The slope of the descending limb is compatible with a thick filament length of 1.63 microm and an average thin filament length of 1.10 microm. These values accord well with recent electron microscope measurements of myofilament length in mammalian muscle.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D012518 Sarcomeres The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length. Sarcomere
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D016014 Linear Models Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression. Linear Regression,Log-Linear Models,Models, Linear,Linear Model,Linear Regressions,Log Linear Models,Log-Linear Model,Model, Linear,Model, Log-Linear,Models, Log-Linear,Regression, Linear,Regressions, Linear
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

K A P Edman
January 2004, Journal of muscle research and cell motility,
K A P Edman
December 1975, The American journal of physiology,
K A P Edman
March 1999, Journal of applied physiology (Bethesda, Md. : 1985),
K A P Edman
January 1998, Advances in experimental medicine and biology,
K A P Edman
April 1971, The Journal of experimental zoology,
K A P Edman
September 1993, Medicine and science in sports and exercise,
K A P Edman
June 1972, The American journal of physiology,
Copied contents to your clipboard!