Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis. 1992

D H Shain, and C Salvadore, and C L Denis
Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham 03824.

Three alcohol dehydrogenase (ADH) genes have recently been characterized in the yeast Kluyveromyces lactis. We report on a fourth ADH in K. lactis (KADH II: KADH2* gene) which is highly similar to other ADHs in K. lactis and Saccharomyces cerevisiae. KADH II appears to be a cytoplasmic enzyme, and after expression of KADH2 in S. cerevisiae enzyme activity comigrated with a K. lactis ADH present in cells grown in glucose or in ethanol. KADH I was also expressed in S. cerevisiae and it comigrated with a major ADH species expressed under glucose growth conditions in K. lactis. The substrate specificities for KADH I and KADH II were shown to be more similar to that of SADH II than to SADH I. SADH I cannot efficiently utilize long chain alcohols, in contrast to other cytoplasmic yeast ADHs, presumably because of the presence of a methionine (residue 271) in its substrate binding cleft. A comparison of the DNA sequences of ADHs among K. lactis, S. cerevisiae and Schizosaccharomyces pombe suggests that the ancestral yeast species contained one cytoplasmic ADH. After divergence from S. pombe, the ADH in the ancestor to K. lactis and S. cerevisiae was duplicated, and one ADH became localized to the mitochondrion, presumably for the oxidative use of ethanol. Following the speciation of S. cerevisiae and K. lactis, the gene encoding the cytoplasmic ADH in S. cerevisiae duplicated, which resulted in the development of the SADH II protein as the primary oxidative enzyme in place of SADH III. In contrast, the K. lactis mitochondrial ADH duplicated to give rise to the highly expressed KADH3 and KADH4 genes, both of which may still play primary roles in oxidative metabolism. These data suggest that K. lactis and S. cerevisiae use different compartments for their metabolism of ethanol. Our results also indicate that the complex regulatory circuits controlling the glucose-repressible SADH2 in S. cerevisiae are a recent acquisition from regulatory networks used for the control of genes other than SADH2.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007716 Kluyveromyces An ascomycetous yeast of the fungal family Saccharomycetaceae, order SACCHAROMYCETALES. Kluyveromyce
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological

Related Publications

D H Shain, and C Salvadore, and C L Denis
January 1990, Yeast (Chichester, England),
D H Shain, and C Salvadore, and C L Denis
August 1992, Molecular microbiology,
D H Shain, and C Salvadore, and C L Denis
April 2005, BMC plant biology,
D H Shain, and C Salvadore, and C L Denis
January 1991, Yeast (Chichester, England),
D H Shain, and C Salvadore, and C L Denis
November 2006, Biochimica et biophysica acta,
D H Shain, and C Salvadore, and C L Denis
June 2005, Applied and environmental microbiology,
D H Shain, and C Salvadore, and C L Denis
September 2004, Gene,
D H Shain, and C Salvadore, and C L Denis
October 2004, Yeast (Chichester, England),
Copied contents to your clipboard!