Gene expression in cells of the central nervous system. 1992

Y Takahashi
Department of Neuropharmacology, Niigata University, Japan.

This review summarized a part of our studies over a long period of time, relating them to the literature on the same topics. We aimed our research toward an understanding of the genetic origin of brain specific proteins, identified by B. W. Moore and of the high complexity of the nucleotide sequence of brain mRNA, originally investigated by W. E. Hahn, but have not completely achieved the projected goal. According to our studies, the reason for the high complexity in the RNA of brain nuclei might be the high complexity in neuronal nuclear RNA as described in the Introduction. Although one possible explanation is that it results from the summation of RNA complexities of several neuronal types, our saturation hybridization study with RNA from the isolated nuclei of granule cells showed an equally high sequence complexity as that of brain. It is likely that this type of neuron also contains numerous rare proteins and peptides, perhaps as many as 20,000 species which were not detectable even by two-dimensional PAGE. I was possible to gain insight into the reasons for the high sequence complexity of brain RNA by cloning the cDNA and genomic DNA of the brain-specific proteins as described in the previous sections. These data provided evidence for the long 3'-noncoding regions in the cDNA of the brain-specific proteins which caused the mRNA of brain to be larger than that from other tissues. During isolation of such large mRNAs, a molecule might be split into a 3'-poly(A)+RNA and 5'-poly(A)-RNA. In the studies on genomic DNA, genes with multiple transcription initiation sites were found in brain, such as CCK, CNP and MAG, in addition to NSE which was a housekeeping gene, and this may contribute to the high sequence complexity of brain RNA. Our studies also indicated the presence of genes with alternative splicing in brain, such as those for CNP, MAG and NGF, suggesting a further basis for greater RNA nucleotide sequence complexity. It is noteworthy that alternative splicing of the genes for MBP and PLP also produced multiple mRNAs. Such a mechanism may be a general characteristic of the genes for the myelin-specific proteins produced by oligodendrocytes. In considering the high nucleotide sequence complexity, it is interesting that MAG and S-100 beta genes etc. possess two additional sites for poly(A).(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

Y Takahashi
December 1998, Cellular and molecular neurobiology,
Y Takahashi
July 1996, The Journal of clinical investigation,
Y Takahashi
January 2005, Alcohol and alcoholism (Oxford, Oxfordshire),
Y Takahashi
January 2000, Acta neurobiologiae experimentalis,
Y Takahashi
June 2010, Anatomia, histologia, embryologia,
Y Takahashi
July 2003, Brain research. Developmental brain research,
Y Takahashi
May 1998, Molecular and chemical neuropathology,
Copied contents to your clipboard!