Cytokine receptors and signal transduction. 1992

A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
Department of Molecular Biology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304.

Cytokines play a vital role in coordinating immune and inflammatory responses. Unlike growth factor receptors with a tyrosine kinase, cytokine receptors have no intrinsic tyrosine kinase activity. Based on their structure, cytokine receptors are classified into several groups. High affinity receptors for IL-2, IL-3, IL-5, IL-6, and GM-CSF are composed of at least two distinct subunits, alpha and beta. The alpha subunits are primary cytokine binding proteins, and the beta subunits are required for formation of high affinity binding sites as well as for signal transduction. The GM-CSF, IL-3, and IL-5 receptors appear to share the same beta subunit in human, and therefore cross-talk among these cytokines may occur at the receptor level. High affinity receptors presumably are linked to various signal transduction pathways that lead to different cytokine functions. Differential expression of the cytokine receptors as well as reorganization of intracellular signalling pathways are critical for development of hemopoietic cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine

Related Publications

A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
March 1994, Bailliere's clinical haematology,
A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
January 1994, Progress in growth factor research,
A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
April 2005, Nihon rinsho. Japanese journal of clinical medicine,
A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
December 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
May 1994, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
January 1998, International reviews of immunology,
A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
January 1998, International reviews of immunology,
A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
November 1992, Clinical and experimental immunology,
A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
January 1993, International review of experimental pathology,
A Miyajima, and T Kitamura, and N Harada, and T Yokota, and K Arai
February 2000, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!