Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. 2005

Paul J Tesar
Mammalian Development Laboratory, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom. paultesar@ninds.nih.gov

The first differentiation event of the mammalian embryo is thought to occur during blastulation and results in two populations of cells, the inner cell mass (ICM) and the trophectoderm. Most embryonic stem (ES) cell lines have been derived from the ICM or a further subset of ICM cells known as the epiblast. There appears to be a limited period of embryonic development during which pluripotent ES cells can be adapted from the cells of the blastocyst to culture. A method is presented here that allows ES cell lines to be isolated from preblastocyst mouse embryos. These lines were derived from 129S2/SvHsd mouse morulae and earlier cleavage stages with high efficiency. The lines expressed genes and antigens characteristic of pluripotent ES cells. XY cell lines remained karyotypically stable through extensive passaging and produced germ-line-competent chimeras upon blastocyst injection. These results suggest that true ES cells can be derived from embryos explanted at any stage of preimplantation development in the mouse. This finding raises the interesting question of whether ES cell lines derived from embryos at different stages of preimplantation development possess the same potential.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D009028 Morula An early embryo that is a compact mass of about 16 BLASTOMERES. It resembles a cluster of mulberries with two types of cells, outer cells and inner cells. Morula is the stage before BLASTULA in non-mammalian animals or a BLASTOCYST in mammals. Morulas
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005854 Germ Cells The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS. Gamete,Gametes,Germ-Line Cells,Germ Line,Cell, Germ,Cell, Germ-Line,Cells, Germ,Cells, Germ-Line,Germ Cell,Germ Line Cells,Germ Lines,Germ-Line Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development

Related Publications

Paul J Tesar
August 2017, Journal of visualized experiments : JoVE,
Paul J Tesar
January 2012, Methods in molecular biology (Clifton, N.J.),
Paul J Tesar
January 2010, Methods in molecular biology (Clifton, N.J.),
Paul J Tesar
April 2010, In vitro cellular & developmental biology. Animal,
Paul J Tesar
January 2011, Methods in molecular biology (Clifton, N.J.),
Paul J Tesar
October 2005, Journal of the Formosan Medical Association = Taiwan yi zhi,
Paul J Tesar
December 1991, Experimental cell research,
Copied contents to your clipboard!