Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. 2005

Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA.

Transcription of the gene for PEPCK-C occurs in a number of mammalian tissues, with highest expression occurring in the liver, kidney cortex, and white and brown adipose tissue. Several hormones and other factors, including glucagon, epinephrine, insulin, glucocorticoids and metabolic acidosis, control this process in three responsive tissues, liver, adipose tissue, and kidney cortex. Expression of the gene in these three tissues in regulated in a different manner, responding to the specific physiological role of the tissue. The PEPCK-C gene promoter has been extensively studied and a number of regulatory regions identified that bind key transcription factors and render the gene responsive to hormonal and dietary stimuli. This review will focus on the control of transcription for the gene, with special emphasis on our current understanding of the transcription factors that are involved in the response of PEPCK-C gene in specific tissues. We have also reviewed the biological function of PEPCK-C in each of the tissues discussed in this review, in order to place the control of PEPCK-C gene transcription in the appropriate physiological context. Because of its extraordinary importance in mammalian metabolism and its broad pattern of tissue-specific expression, the PEPCK-C gene has become a model for studying the biological basis of the control of gene transcription.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty

Related Publications

Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
October 2009, The Journal of biological chemistry,
Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
November 1998, The Journal of biological chemistry,
Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
August 1987, Nucleic acids research,
Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
January 1991, Molecular and cellular biochemistry,
Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
January 1984, Transactions of the Association of American Physicians,
Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
October 1996, Journal of hepatology,
Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
January 1983, Nature,
Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
October 1996, Biochemical and molecular medicine,
Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
July 1998, The Biochemical journal,
Kaushik Chakravarty, and Hanoch Cassuto, and Lea Reshef, and Richard W Hanson
February 1999, Molecular and cellular endocrinology,
Copied contents to your clipboard!