Lipopolysaccharide alterations responsible for combined quinolone and beta-lactam resistance in Pseudomonas aeruginosa. 1992

H J Leying, and K H Büscher, and W Cullmann, and R L Then
Department of Medical Microbiology, Ruhr University, Bochum, FRG.

Resistant variants of three clinical Pseudomonas aeruginosa isolates were obtained in the presence of aztreonam. The variants exhibited a four- to eightfold increase in the minimal inhibitory concentrations to beta-lactam antibiotics (except imipenem) to quinolones, such as norfloxacin and fleroxacin, chloramphenicol and tetracycline, but not to gentamicin and polymyxin B. beta-Lactamase production was barely detectable in both wild-type strains and the resistant clones. Only ampicillin, cefoxitin and imipenem increased the production of beta-lactamase, whereas various other beta-lactams did not. Penicillin-binding proteins remained unchanged in the aztreonam-resistant clones. The analysis of the outer membrane proteins did not reveal differences in the outer membrane proteins between the wild-type strains and the aztreonam-resistant clones. Two of the three antibiotic-resistant isogenic clones contained less lipopolysaccharides (LPSs) than their corresponding wild-type strains. Moreover, it could be demonstrated that the ratio of 2-keto-3-deoxy octonate to carbohydrate of the LPS changed in any case between the wild-type strains and the aztreonam-resistant clones. These alterations were accompanied by a decrease in surface hydrophobicity of the resistant clones as compared to the wild-type strains. Therefore, quantitative as well as qualitative alterations in the LPS may provide an explanation for the resistant phenotype observed.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D010458 Peptidyl Transferases Acyltransferases that use AMINO ACYL TRNA as the amino acid donor in formation of a peptide bond. There are ribosomal and non-ribosomal peptidyltransferases. Peptidyl Transferase,Peptidyl Translocase,Peptidyl Translocases,Peptidyltransferase,Transpeptidase,Transpeptidases,Peptidyltransferases,Transferase, Peptidyl,Transferases, Peptidyl,Translocase, Peptidyl,Translocases, Peptidyl
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002267 Muramoylpentapeptide Carboxypeptidase Enzyme which catalyzes the peptide cross-linking of nascent CELL WALL; PEPTIDOGLYCAN. Carboxypeptidase Transpeptidase,Carboxypeptidase, Muramoylpentapeptide,Transpeptidase, Carboxypeptidase
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D006602 Hexosyltransferases Enzymes that catalyze the transfer of hexose groups. EC 2.4.1.-.
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

H J Leying, and K H Büscher, and W Cullmann, and R L Then
August 1984, Antimicrobial agents and chemotherapy,
H J Leying, and K H Büscher, and W Cullmann, and R L Then
February 1988, Antimicrobial agents and chemotherapy,
H J Leying, and K H Büscher, and W Cullmann, and R L Then
January 1987, Folia microbiologica,
H J Leying, and K H Büscher, and W Cullmann, and R L Then
April 1994, The Journal of antimicrobial chemotherapy,
H J Leying, and K H Büscher, and W Cullmann, and R L Then
March 1999, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases,
H J Leying, and K H Büscher, and W Cullmann, and R L Then
October 1977, Antimicrobial agents and chemotherapy,
H J Leying, and K H Büscher, and W Cullmann, and R L Then
April 1991, The Journal of antimicrobial chemotherapy,
H J Leying, and K H Büscher, and W Cullmann, and R L Then
January 1992, Archives de l'Institut Pasteur de Tunis,
H J Leying, and K H Büscher, and W Cullmann, and R L Then
January 1988, Reviews of infectious diseases,
H J Leying, and K H Büscher, and W Cullmann, and R L Then
June 1984, Journal of medical microbiology,
Copied contents to your clipboard!