Estrogen regulates {beta}1-subunit expression in Ca(2+)-activated K(+) channels in arteries from reproductive tissues. 2005

Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA.

Daily estradiol-17beta (E(2)beta) increases basal uterine blood flow (UBF) and enhances acute E(2)beta-mediated increases in UBF in ovariectomized nonpregnant ewes. The acute E(2)beta-mediated rise in UBF involves vascular smooth muscle (VSM) large-conductance Ca(2+)-activated K(+) channels (BK(Ca)). BK(Ca) consist of pore-forming alpha-subunits and regulatory beta(1)-subunits that modulate channel function and E(2)beta responsiveness. It is unclear whether E(2)beta also alters subunit expression and thus channel density and/or function, thereby contributing to the rise in basal UBF and enhanced UBF responses that follow daily E(2)beta. Therefore, we examined BK(Ca) subunit expression by using reverse transcription-PCR and immunoblot analysis of arterial VSM from reproductive and nonreproductive tissues and myometrium from ovariectomized nonpregnant ewes after daily E(2)beta (1 microg/kg iv) or vehicle without or with acute E(2)beta (1 microg/kg). Tissue distribution was determined by immunohistochemistry. Acute E(2)beta did not alter alpha- or beta(1)-subunit expression in any tissue (P > 0.1). Daily E(2)beta also did not affect alpha-subunit mRNA or protein in any tissue (P > 0.1) or mesenteric arterial VSM beta(1)-subunit. However, daily E(2)beta increased uterine and mammary arterial VSM beta(1)-subunit mRNA by 32% and 83% (P < 0.05), uterine VSM protein by 30%, and myometrial beta(1)-subunit mRNA and protein by 74% (P < or = 0.005). Immunostaining of uterine arteries, myometrium, and intramyometrial arteries paralleled immunoblot analyses for both subunits. Although BK(Ca) density is unaffected by daily and acute E(2)beta, daily E(2)beta increases beta(1)-subunit in proximal and distal uterine arterial VSM. Thus prolonged E(2)beta exposure may alter BK(Ca) function, estrogen responsiveness, and basal vascular tone and reactivity in reproductive arteries by modifying alpha:beta(1) stoichiometry.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008323 Mammary Arteries Arteries originating from the subclavian or axillary arteries and distributing to the anterior thoracic wall, mediastinal structures, diaphragm, pectoral muscles and mammary gland. Internal Mammary Artery,Internal Thoracic Artery,Arteries, Internal Mammary,Arteries, Internal Thoracic,Arteries, Mammary,Artery, Internal Mammary,Artery, Internal Thoracic,Artery, Mammary,Internal Mammary Arteries,Internal Thoracic Arteries,Mammary Arteries, Internal,Mammary Artery,Mammary Artery, Internal,Thoracic Arteries, Internal,Thoracic Artery, Internal
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009215 Myometrium The smooth muscle coat of the uterus, which forms the main mass of the organ. Uterine Muscle,Muscle, Uterine,Muscles, Uterine,Uterine Muscles
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
September 2001, Journal of applied physiology (Bethesda, Md. : 1985),
Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
January 2015, Digestion,
Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
August 1996, Proceedings of the National Academy of Sciences of the United States of America,
Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
September 1993, The American journal of physiology,
Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
February 2000, FEBS letters,
Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
October 1997, Comparative biochemistry and physiology. Part A, Physiology,
Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
March 1997, Circulation,
Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
May 2012, Circulation research,
Deepa Nagar, and Xiao-Tie Liu, and Charles R Rosenfeld
February 2002, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society,
Copied contents to your clipboard!