Expression of a cold-adapted fish trypsin in Pichia pastoris. 2005

Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
Department of Food Science and Agricultural Chemistry, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC, Canada.

Trypsin is a highly valuable protease that has many industrial and biomedical applications. The growing demand for non-animal sources of the enzyme and for trypsins with special properties has driven the interest to clone and express this protease in microorganisms. Reports about expression of recombinant trypsins show wide differences in the degree of success and are contained mainly in patent applications, which disregard the difficulties associated with the developments. Although the yeast Pichia pastoris appears to be the microbial host with the greatest potential for the production of trypsin, it has shown problems when expressing cold-adapted fish trypsins (CAFTs). CAFTs are considered of immense value for their comparative advantage over other trypsins in a number of food-processing and biotechnological applications. Thus, to investigate potential obstacles related to the production of CAFTs in P. pastoris, the cunner fish trypsin (CFT) was cloned in different Pichia expression vectors. The vectors were constructed targeting both internal and secreted expression and keeping the CFT native signal peptide. Western-blotting analysis confirmed the expression with evident differences for each construct, observing a major effect of the leader peptide sequence on the expression patterns. Immobilized nickel affinity chromatography yielded a partially purified recombinant CFT, which exhibited trypsin-specific activity after activation with bovine enterokinase.

UI MeSH Term Description Entries
D010473 Perciformes The most diversified of all fish orders and the largest vertebrate order. It includes many of the commonly known fish such as porgies, croakers, sunfishes, dolphin fish, mackerels, TUNA, etc. Bluegill,Croakers,Dolphin Fish,Porgies,Sparid Fish,Sparus,Sunfishes,Centrarchidae,Mackerels,Mahi-Mahi,Bluegills,Croaker,Fish, Sparid,Mackerel
D010843 Pichia Yeast-like ascomycetous fungi of the family Saccharomycetaceae, order SACCHAROMYCETALES isolated from exuded tree sap. Hansenula,Hansenulas,Pichias
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004765 Enteropeptidase A specialized proteolytic enzyme secreted by intestinal cells. It converts TRYPSINOGEN into its active form TRYPSIN by removing the N-terminal peptide. EC 3.4.21.9. Enterokinase
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
November 2012, Journal of industrial microbiology & biotechnology,
Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
October 2015, Protein expression and purification,
Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
September 1998, Acta crystallographica. Section D, Biological crystallography,
Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
December 2017, AMB Express,
Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
January 2021, Methods in enzymology,
Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
February 2007, Protein expression and purification,
Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
September 2016, Protein expression and purification,
Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
September 2000, Molecular biotechnology,
Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
December 1993, American biotechnology laboratory,
Martin Macouzet, and Benjamin K Simpson, and Byong H Lee
January 2009, Methods in enzymology,
Copied contents to your clipboard!