Recent advances on T-cell regulation by receptor tyrosine kinases. 2005

Jiangping Wu, and Hongyu Luo
Laboratory of Immunology, Notre Dame Hospital, Centre Hospitalier de l'Université de Montréal, Quebec H2L 4M1, Canada. jianping.wu@umontreal.ca

OBJECTIVE This review summarizes recent knowledge on the role of receptor tyrosine kinases, particularly erythropoietin-producing hepatocyte kinases (Ephs), in T-cell function and development. RESULTS Erythropoietin-producing hepatocyte kinase function and signaling in the immune system have been recently investigated. Cross-linking some Ephs results in T-cell costimulation and reduces the response threshold of T-cell receptor activation. In vivo, T-cell-mediated responses are compromised in EphB6-/- mice. Some Ephs are shown to control T-cell migration and adhesion, as well as the integrity of lymphoid organ structure. CONCLUSIONS Ephs are the largest family of receptor tyrosine kinases. Some Ephs are expressed in the lymphoid organs. Ephrins, ligands of Ephs, are also cell surface molecules. Cross-linking of certain Ephs facilitates T-cell activation and proliferation. Under physiologic conditions, such cross-linking by ephrins likely occurs in lymphoid organs, where ephrins on T cells interact with ephrins on the surface of neighboring fraternal T cells or antigen-presenting cells; this may explain why T-cell responses are more effectively initiated in the lymphoid organs. Certain Ephs are also critical for lymphocyte adhesion and migration and for proper lymphoid organ structure. Ephs and ephrins are highly redundant and their interactions promiscuous, suggesting pivotal roles of these molecules in biology. Conversely, such redundancy represents a major challenge to further dissection of the function of individual Ephs. Multiple tissue-specific gene null mutations on Ephs or ephrins will likely reveal more interesting immune-related phenotypes.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D020928 Mitogen-Activated Protein Kinases A superfamily of PROTEIN SERINE-THREONINE KINASES that are activated by diverse stimuli via protein kinase cascades. They are the final components of the cascades, activated by phosphorylation by MITOGEN-ACTIVATED PROTEIN KINASE KINASES, which in turn are activated by mitogen-activated protein kinase kinase kinases (MAP KINASE KINASE KINASES). Mitogen Activated Protein Kinase,Mitogen-Activated Protein Kinase,Kinase, Mitogen-Activated Protein,Kinases, Mitogen-Activated Protein,Mitogen Activated Protein Kinases,Protein Kinase, Mitogen-Activated,Protein Kinases, Mitogen-Activated
D036081 Receptors, Eph Family A large family of receptor protein-tyrosine kinases that are structurally-related. The name of this family of proteins derives from original protein Eph (now called the EPHA1 RECEPTOR), which was named after the cell line it was first discovered in: Erythropoietin-Producing human Hepatocellular carcinoma cell line. Members of this family have been implicated in regulation of cell-cell interactions involved in nervous system patterning and development. Eph Family Receptors,Eph Receptor Tyrosine Kinase,Eph Receptors,EphA Receptors,EphB Receptor,EphB Receptors,Ephrin A Receptors,Ephrin B Receptor,Ephrin B Receptors,Ephrin Receptors,Receptor, Ephrin B,Receptors, Eph,Receptors, EphB,Receptors, Ephrin,Receptors, Ephrin A
D036342 Ephrins Signaling proteins that are ligands for the EPH FAMILY RECEPTORS. They are membrane-bound proteins that are attached to the CELL MEMBRANE either through a GLYCOINOSITOL PHOSPHOLIPID MEMBRANE ANCHOR or through a transmembrane domain. Many of the ephrins are considered important intercellular signaling molecules that control morphogenic changes during embryogenesis. Ephrin,Eph Receptor Ligands,Ligands, Eph Receptor,Receptor Ligands, Eph

Related Publications

Jiangping Wu, and Hongyu Luo
July 1995, Leukemia & lymphoma,
Jiangping Wu, and Hongyu Luo
June 1986, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Jiangping Wu, and Hongyu Luo
June 2010, Cell,
Jiangping Wu, and Hongyu Luo
October 2000, Cell,
Jiangping Wu, and Hongyu Luo
January 1995, Cancer surveys,
Jiangping Wu, and Hongyu Luo
June 2011, The Journal of biological chemistry,
Jiangping Wu, and Hongyu Luo
January 1998, Trends in cardiovascular medicine,
Jiangping Wu, and Hongyu Luo
July 1993, Cell,
Jiangping Wu, and Hongyu Luo
October 2023, Current opinion in structural biology,
Copied contents to your clipboard!