Frequency tuning properties of neurons in the inferior colliculus of an FM bat. 1992

J H Casseday, and E Covey
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710.

We examined frequency tuning characteristics of single neurons in the inferior colliculus of the echolocating bat, Eptesicus fuscus, in order to determine whether there are different classes of spectral selectivity at this level and to relate frequency tuning properties to the design of the echolocation signal. In unanesthetized but tranquilized animals, we recorded responses from 363 single units to pure tones, frequency-modulated (FM) sweeps, or broad-band noise. Most units were selective for stimulus type; 50% responded only to pure tones, 14% responded only to FM sweeps, and 5% responded only to noise. The remainder responded to two or more types of stimuli. Tuning curves could be classified as follows: 1) V-shaped tuning curves (57%) were the most common type; 2) closed tuning curves (20%) had thresholds at both low and high sound levels; 3) narrow filters (14%) had Q values above 20 at 10 dB and 30 dB above threshold or 10 dB and 40 dB above threshold; 4) frequency-opponent tuning (6%) was found in units with high spontaneous activity; within a center range of frequencies, firing rate increased above spontaneous level, but at higher or lower frequencies, firing rate decreased below spontaneous level; 5) double-tuned units (3%) had two best frequencies (BF). The most clear evidence of topographic distribution was seen for filter units, which were only found in the dorsal part of the 20-30 kHz isofrequency contour. Filter units were also the most clearly related to the echolocation signal of the bat. Their BFs were all within the range of the dominant frequency (approximately 20-30 kHz) that Eptesicus uses during the searching phase of echolocation.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002685 Chiroptera Order of mammals whose members are adapted for flight. It includes bats, flying foxes, and fruit bats. Bats,Flying Foxes,Horseshoe Bats,Pteropodidae,Pteropus,Rhinolophus,Rousettus,Bat, Horseshoe,Bats, Horseshoe,Foxes, Flying,Horseshoe Bat
D005260 Female Females
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J H Casseday, and E Covey
January 1990, Experimental brain research,
J H Casseday, and E Covey
February 2001, Journal of neurophysiology,
J H Casseday, and E Covey
December 2011, Journal of neurophysiology,
J H Casseday, and E Covey
January 2010, Audiology & neuro-otology,
Copied contents to your clipboard!