Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. 1979

E W Hafner, and C W Tabor, and H Tabor

Strains of Escherichia coli K12 have been constructed which do not contain any of the polyamines normally present in a wild type strain, namely, 1,4-diaminobutane (putrescine) and spermidine. This phenotype arises as a consequence of the assembly into these strains of deletion mutations in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). The polyamine-deficient strains grow indefinitely in the absence of polyamines but with a growth rate one-third of that found in the presence of polyamines. These strains can act as hosts for bacteriophages T4, T7, and f2, although the latter phage is poorly adsorbed; they can also maintain F' factors, ColE1 and P1 plasmids, and lysogeny by bacteriophage lambda. In contrast, the production of bacteriophage lambda in the absence of polyamines is strikingly decreased (greater than 99%) either after infection of a nonlysogen or after induction of a lysogen. A polyamine-deficient Hfr strain can transfer its chromosome to a recipient at a normal rate, but the number of recombinants observed in a cross is decreased approximately 300-fold. No such effect is observed when only the F- recipient strain in a cross is polyamine deficient.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013095 Spermidine A polyamine formed from putrescine. It is found in almost all tissues in association with nucleic acids. It is found as a cation at all pH values, and is thought to help stabilize some membranes and nucleic acid structures. It is a precursor of spermine.
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

E W Hafner, and C W Tabor, and H Tabor
January 1976, Annual review of biochemistry,
E W Hafner, and C W Tabor, and H Tabor
August 1966, The Journal of biological chemistry,
E W Hafner, and C W Tabor, and H Tabor
March 1973, European journal of biochemistry,
E W Hafner, and C W Tabor, and H Tabor
January 1972, Advances in enzymology and related areas of molecular biology,
E W Hafner, and C W Tabor, and H Tabor
January 1985, Australian journal of biological sciences,
E W Hafner, and C W Tabor, and H Tabor
March 1970, Journal of bacteriology,
E W Hafner, and C W Tabor, and H Tabor
January 1983, Methods in enzymology,
Copied contents to your clipboard!