Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities. 2005

Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742, USA.

Previous research demonstrated that methanogenic cultures enriched from Baltimore Harbor (Baltimore, MD) sediments were able to degrade naphthalene and phenanthrene. In this report, the degradation activity was maintained through a sequential transfer without adding additional sediments and the established polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities were characterized via comparative sequence analysis of clone libraries of 16S rRNA genes amplified using bacteria-specific and Archaea-specific primers. The phylogenetic analysis indicated that the addition of PAHs clearly shifted the structure of the methanogenic community and resulted in an increase in populations of species previously found in other hydrocarbon-degrading communities. Of particular interest is the fact that the dominant microbial population of the naphthalene cultures was different from that of the phenanthrene cultures, suggesting that different species are involved in the degradation. Finally, this information may lead to the identification and isolation of methanogenic populations that can degrade PAHs.

UI MeSH Term Description Entries
D008697 Methane The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011084 Polycyclic Aromatic Hydrocarbons Aromatic hydrocarbons that contain extended fused-ring structures. Polycyclic Aromatic Hydrocarbon,Polycyclic Hydrocarbons, Aromatic,Polynuclear Aromatic Hydrocarbon,Polynuclear Aromatic Hydrocarbons,Aromatic Hydrocarbon, Polycyclic,Aromatic Hydrocarbon, Polynuclear,Aromatic Hydrocarbons, Polycyclic,Aromatic Hydrocarbons, Polynuclear,Aromatic Polycyclic Hydrocarbons,Hydrocarbon, Polycyclic Aromatic,Hydrocarbon, Polynuclear Aromatic,Hydrocarbons, Aromatic Polycyclic,Hydrocarbons, Polycyclic Aromatic,Hydrocarbons, Polynuclear Aromatic
D001105 Archaea One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA. Archaebacteria,Archaeobacteria,Archaeon,Archebacteria
D001673 Biodegradation, Environmental Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers. Bioremediation,Phytoremediation,Natural Attenuation, Pollution,Environmental Biodegradation,Pollution Natural Attenuation
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D019015 Geologic Sediments A mass of organic or inorganic solid fragmented material, or the solid fragment itself, that comes from the weathering of rock and is carried by, suspended in, or dropped by air, water, or ice. It refers also to a mass that is accumulated by any other natural agent and that forms in layers on the earth's surface, such as sand, gravel, silt, mud, fill, or loess. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1689) Marine Oil Snow,Sediments, Geologic,Sediments, Marine,Geologic Sediment,Marine Snow,Sediment, Geologic,Marine Oil Snows,Marine Sediment,Marine Sediments,Oil Snow, Marine,Sediment, Marine,Snow, Marine Oil

Related Publications

Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
December 2019, Journal of environmental sciences (China),
Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
May 2008, Research in microbiology,
Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
May 2000, Applied and environmental microbiology,
Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
June 2003, FEMS microbiology letters,
Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
December 2018, Water environment research : a research publication of the Water Environment Federation,
Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
January 2001, International journal of systematic and evolutionary microbiology,
Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
May 2018, The Science of the total environment,
Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
January 2006, Journal of toxicology and environmental health. Part A,
Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
June 2007, Ecotoxicology and environmental safety,
Wook Chang, and Youngsoon Um, and Brendan Hoffman, and Tracey R Pulliam Holoman
August 2004, Microbial ecology,
Copied contents to your clipboard!