An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus. 2005

Christine M Coyle, and Daniel G Panaccione
Division of Plant & Soil Sciences, Genetics & Developmental Biology Program, 401 Brooks Hall, West Virginia University, Morgantown, West Virginia 26506-6058, USA.

The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin.

UI MeSH Term Description Entries
D002967 Claviceps A genus of ascomycetous fungi, family Clavicipitaceae, order Hypocreales, parasitic on various grasses (POACEAE). The sclerotia contain several toxic alkaloids. Claviceps purpurea on rye causes ERGOTISM. Ergot Fungus,Claviceps purpurea,Sphacelia segetum,Fungus, Ergot
D004876 Ergot Alkaloids Alkaloids originally isolated from the ergot fungus Claviceps purpurea (Hypocreaceae). They include compounds that are structurally related to ergoline (ERGOLINES) and ergotamine (ERGOTAMINES). Many of the ergot alkaloids act as alpha-adrenergic antagonists. Clavine Alkaloids,Alkaloids, Clavine,Alkaloids, Ergot
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D001232 Aspergillus fumigatus A species of imperfect fungi from which the antibiotic fumigatin is obtained. Its spores may cause respiratory infection in birds and mammals. Aspergillus fumigates,Neosartorya fumigata,Sartorya fumigata
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic
D019883 Alkyl and Aryl Transferases A somewhat heterogeneous class of enzymes that catalyze the transfer of alkyl or related groups (excluding methyl groups). EC 2.5. Alkyltransferase,Alkyltransferases,Aryltransferase,Aryltransferases

Related Publications

Christine M Coyle, and Daniel G Panaccione
October 2014, Acta crystallographica. Section F, Structural biology communications,
Christine M Coyle, and Daniel G Panaccione
September 2009, Chembiochem : a European journal of chemical biology,
Christine M Coyle, and Daniel G Panaccione
January 1977, Folia microbiologica,
Christine M Coyle, and Daniel G Panaccione
March 1977, Indian journal of biochemistry & biophysics,
Christine M Coyle, and Daniel G Panaccione
August 2023, Applied and environmental microbiology,
Christine M Coyle, and Daniel G Panaccione
July 1977, Indian journal of experimental biology,
Christine M Coyle, and Daniel G Panaccione
January 2012, Mycologia,
Christine M Coyle, and Daniel G Panaccione
January 2015, Molecules (Basel, Switzerland),
Christine M Coyle, and Daniel G Panaccione
July 1935, Science (New York, N.Y.),
Copied contents to your clipboard!