Investigation of the structure of the blue copper protein from Rhus vernicifera stellacyanin by 1H nuclear magnetic resonance spectroscopy. 1979

H A Hill, and W K Lee

The 270-MHz 1H nuclear magnetic resonance spectra of Cu(II), Cu(I), and apo-stellacyanin are reported and compared. The data indicate that little conformational change occurs on reduction of the protein or on removing the copper ion. In the aromatic region of the spectra of the holoprotein, resonances associated with two freely titrating histidines are observed. Two additional sharp resonances are observed in the spectra of the apostellacyanin which are tentatively assigned to additional histidines. This result requires that not more than two histidines can be ligands since there are only four histidines in the whole protein. The absence of methionine has been reported and is one of the possible causes for the difference between stellacyanin and the other copper blue proteins. A comparison of these data with those available for other blue copper proteins, in conjunction with the sequence information, leads to a proposed structure for the copper site in stellacyanin.

UI MeSH Term Description Entries
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D010970 Plastocyanin A copper-containing plant protein that is a fundamental link in the electron transport chain of green plants during the photosynthetic conversion of light energy by photophosphorylation into the potential energy of chemical bonds. Plastocyanine,Silver Plastocyanin,Plastocyanin, Silver
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D001059 Apoproteins The protein components of a number of complexes, such as enzymes (APOENZYMES), ferritin (APOFERRITINS), or lipoproteins (APOLIPOPROTEINS). Apoprotein
D001400 Azurin A bacterial protein from Pseudomonas, Bordetella, or Alcaligenes which operates as an electron transfer unit associated with the cytochrome chain. The protein has a molecular weight of approximately 16,000, contains a single copper atom, is intensively blue, and has a fluorescence emission band centered at 308nm.
D012251 Toxicodendron A genus (formerly part of Rhus genus) of shrubs, vines, or trees that yields a highly allergenic oleoresin which causes a severe contact dermatitis (DERMATITIS, TOXICODENDRON). The most toxic species are Toxicodendron vernix (poison sumac), T. diversilobum (poison oak), and T. radicans (poison ivy). T. vernicifera yields a useful varnish from which certain enzymes (laccases) are obtained. Ivy, Poison,Oak, Poison,Poison Ivy,Poison Oak,Poison Sumac,Sumac, Poison,Rhus toxicodendron,Ivies, Poison,Oaks, Poison,Poison Ivies,Poison Oaks,Poison Sumacs,Rhus toxicodendrons,Sumacs, Poison,Toxicodendrons,toxicodendron, Rhus

Related Publications

H A Hill, and W K Lee
April 1970, Biochimica et biophysica acta,
H A Hill, and W K Lee
April 1970, Biochimica et biophysica acta,
H A Hill, and W K Lee
March 1991, Journal of inorganic biochemistry,
H A Hill, and W K Lee
January 1978, Bioinorganic chemistry,
H A Hill, and W K Lee
January 1990, Biotechnology (Reading, Mass.),
Copied contents to your clipboard!