A C-terminal glycine suppresses production of pleurocidin as a fusion peptide in Escherichia coli. 2006

Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
NRC Institute for Marine Biosciences, National Research Council Canada, Halifax, NS, Canada B3H 3Z1.

The winter flounder (Pseudopleuronectes americanus) antimicrobial peptide pleurocidin was produced in Escherichia coli using a synthetic gene constructed by PCR. The gene expresses pleurocidin from pET21a fused to the C-terminus of an insoluble carrier peptide. Once expressed, the fusion peptide formed inclusion bodies in the cytoplasm that were collected, solubilized in guanidine-HCl, and chemically cleaved using hydroxylamine at a unique asparaginyl-glycyl dipeptide. This released recombinant pleurocidin (r-pleurocidin), which was purified using ultrafiltration followed by reverse phase chromatography. The r-pleurocidin peptide resolved as a single band (2.7 kDa) when analyzed by Tris-Tricine buffered SDS-PAGE, and its amino acid sequence was confirmed using tandem mass spectrometry. Extending the pleurocidin sequence with a C-terminal glycine (r-pleurocidin-G) suppressed production of the fusion peptide 15-fold. When pleurocidin was extended further to include aspartate (r-pleurocidin-GD), the same effect was observed, and when pleurocidin was extended with aspartate alone, no effect was observed. Expression of fusion peptide containing either r-pleurocidin-G or r-pleurocidin-GD with low concentrations of inductant caused E. coli to enter stationary phase prematurely, but did not affect overall growth rates. A partial production recovery of r-pleurocidin-G was achieved by inducing expression in stationary phase cells. We observed r-pleurocidin-G to have enhanced antimicrobial activity compared with r-pleurocidin, and we propose that this activity interferes with E. coli metabolism during expression. This antimicrobial effect is probably facilitated by residual solubility of the fusion peptide and by a C-terminal cap structure, which stabilizes the r-pleurocidin-G alpha-helix that is thought to be important for activity.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial

Related Publications

Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
February 2016, Current microbiology,
Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
January 1996, Protein engineering,
Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
May 2020, Open biology,
Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
March 1993, Enzyme and microbial technology,
Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
July 2013, Molecular microbiology,
Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
February 2009, Journal of biotechnology,
Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
August 2009, Applied microbiology and biotechnology,
Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
May 2007, Current microbiology,
Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
October 2012, Journal of microbiology and biotechnology,
Brian C Bryksa, and Lisa D MacDonald, and Aleks Patrzykat, and Susan E Douglas, and Neil R Mattatall
June 2011, Microbial cell factories,
Copied contents to your clipboard!