A role for betaFTZ-F1 in regulating ecdysteroid titers during post-embryonic development in Drosophila melanogaster. 2005

J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
FRE2852 CNRS Protéines: Biochimie structurale et fonctionnelle, Groupe Biogenèse des Stéroïdes, Université P. et M. Curie, Bat. A, Case 29, 7 Quai St. Bernard, 75252 Paris Cedex 05, France.

Variations in ecdysteroid titers play crucial roles in arthropods by initiating and regulating molting and metamorphosis. The recent identification of genes coding for cytochrome P450 enzymes involved in Drosophila ecdysteroidogenesis provides new molecular tools to investigate the regulation of insect hormone production. In the present study, we used an enzyme immunoassay to show that the molting hormone titer is strictly correlated with the steroidogenic capacity of the ring gland. A temporal correlation between dynamics of ecdysone production and expression of genes encoding steroidogenic enzymes was observed during the third instar, suggesting that the timing of hormone production depends on transcriptional regulation of the biosynthetic enzymes. Using clonal analysis, levels of two steroidogenic enzymes, Phantom (PHM) and Disembodied (DIB), were shown to be very reduced in ftz transcription factor 1 (ftz-f1) mutant ring gland cells whereas there was no effect of the without children (woc) mutation, suggesting that FTZ-F1 regulates phm and dib expression. Since betaFTZ-F1 is the homolog of the vertebrate steroidogenic factor 1 (SF1), which plays a key role in the differentiation of vertebrate steroidogenic organs through transcriptional regulation of steroidogenic enzymes, this study emphasizes the strong parallels between insects and vertebrates with respect to the regulatory mechanisms of steroidogenesis.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations

Related Publications

J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
September 1982, Developmental biology,
J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
June 1999, Journal of insect physiology,
J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
October 1977, Developmental biology,
J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
June 1986, Developmental biology,
J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
December 2000, Development (Cambridge, England),
J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
October 2002, Development, growth & differentiation,
J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
October 1995, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine,
J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
March 1950, The Quarterly journal of microscopical science,
J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
February 1999, Molecules and cells,
J-P Parvy, and C Blais, and F Bernard, and J T Warren, and A Petryk, and L I Gilbert, and M B O'Connor, and C Dauphin-Villemant
May 2003, Developmental biology,
Copied contents to your clipboard!