Mechanisms of antinociception of spinal galanin: how does galanin inhibit spinal sensitization? 2005

X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
Anesthesia Research Laboratory, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA. xyhua@ucsd.edu

Galanin by a spinal action has been shown to have an antihyperalgesic action. Thus, in rats with lumbar intrathecal (IT) catheters, the thermal hyperalgesia evoked by carrageenan paw injection was blocked by IT delivery of galanin(1-29) (Gal(1-29)) and galanin(2-11) (Gal(2-11)) with the rank order of activity being Gal(1-29)>Gal(2-11). We sought to determine whether this spinal action reflects an effect upon afferent transmitter release, e.g., substance P (SP), and/or on secondary neurons, e.g., signaling postsynaptic to neurokinin 1 (NK1) receptor activation. To address the question on afferent release, we investigated the effect of IT administration of galanin on tissue injury-induced spinal NK1 internalization (an indicator of SP release). Noxious stimulation (paw compression) produced an increase in NK1 internalization in dorsal horn lamina I. IT pretreatment of rats with Gal(1-29) and Gal(2-11) significantly attenuated the evoked NK1 internalization, with the rank order of activity being Gal(1-29)>Gal(2-11)>saline. To address the question of postsynaptic action, we examined the effects of IT galanin upon IT SP-induced thermal hyperalgesia and spinal PGE2 release. Application of SP (30 nmol) directly to spinal cord led to a decrease in thermal thresholds and a profound increase in PGE(2) concentration in spinal dialysates. Both phenomena were reversed by Gal(1-29) and Gal(2-11) (10nmol, IT). These findings suggest that the antihyperalgesic effect of spinal galanin is due to its action on sites both presynaptic (inhibition of SP release) and postsynaptic (blockade of SP-evoked hyperalgesia and PGE2 production) to the primary afferents.

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002351 Carrageenan A water-soluble extractive mixture of sulfated polysaccharides from RED ALGAE. Chief sources are the Irish moss CHONDRUS CRISPUS (Carrageen), and Gigartina stellata. It is used as a stabilizer, for suspending COCOA in chocolate manufacture, and to clarify BEVERAGES. Carrageenin,iota-Carrageenan,kappa-Carrageenan,lambda-Carrageenan,iota Carrageenan,kappa Carrageenan,lambda Carrageenan
D006930 Hyperalgesia An increased sensation of pain or discomfort produced by minimally noxious stimuli due to damage to soft tissue containing NOCICEPTORS or injury to a peripheral nerve. Hyperalgesia, Tactile,Hyperalgesia, Thermal,Hyperalgia,Hyperalgia, Mechanical,Hyperalgia, Primary,Hyperalgia, Secondary,Allodynia,Allodynia, Mechanical,Allodynia, Tactile,Allodynia, Thermal,Hyperalgesia, Mechanical,Hyperalgesia, Primary,Hyperalgesia, Secondary,Hyperalgesic Sensations,Mechanical Allodynia,Mechanical Hyperalgesia,Tactile Allodynia,Thermal Allodynia,Allodynias,Hyperalgesias,Hyperalgesias, Thermal,Hyperalgesic Sensation,Mechanical Hyperalgia,Mechanical Hyperalgias,Primary Hyperalgia,Primary Hyperalgias,Secondary Hyperalgia,Secondary Hyperalgias,Sensation, Hyperalgesic,Sensations, Hyperalgesic,Thermal Hyperalgesia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2

Related Publications

X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
April 2003, Journal of Korean medical science,
X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
October 1994, Naunyn-Schmiedeberg's archives of pharmacology,
X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
January 2000, Brain research,
X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
February 2004, The Journal of pharmacology and experimental therapeutics,
X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
January 2010, Experientia supplementum (2012),
X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
July 1987, European journal of pharmacology,
X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
October 2001, European journal of pharmacology,
X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
October 2022, Toxins,
X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
January 1985, Interferon,
X-Y Hua, and K F Salgado, and G Gu, and B Fitzsimmons, and I Kondo, and T Bartfai, and T L Yaksh
September 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Copied contents to your clipboard!