Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta. 2005

Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
Centro Europeo di Ricerca sul Cervello Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Via del Fosso di Fiorano, 64, 00143 Rome, Italy.

We investigated the mechanisms of presynaptic inhibition of GABAergic neurotransmission by group III metabotropic glutamate receptors (mGluRs) and GABA(B) receptors, in dopamine (DA) neurons of the substantia nigra pars compacta (SNc). Both the group III mGluRs agonist L-(+)-2-amino-4-phosphonobutyric acid (AP4, 100 microM) and the GABA(B) receptor agonist baclofen (10 microM) reversibly depressed the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) to 48.5 +/- 2.7 and 79.3 +/- 1.6% (means +/- SE) of control, respectively. On the contrary, the frequency of action potential-independent miniature IPSCs (mIPSCs), recorded in tetrodotoxin (TTX, 1 microM) and cadmium (100 microM) were insensitive to AP4 but were reduced by baclofen to 49.7 +/- 8.6% of control. When the contribution of voltage-dependent calcium channels (VDCCs) to synaptic transmission was boosted with external barium (1 mM), AP4 became effective in reducing TTX-resistant mIPSCs to 65.4 +/- 3.9% of control, thus confirming a mechanism of presynaptic inhibition involving modulation of VDCCs. Differently from AP4, baclofen inhibited to 58.5 +/- 6.7% of control the frequency mIPSCs recorded in TTX and the calcium ionophore ionomycin (2 microM), which promotes Ca2+-dependent, but VDCC-independent, transmitter release. Moreover, in the presence of alpha-latrotoxin (0.3 nM), to promote a Ca2+-independent vesicular release of GABA, baclofen reduced mIPSC frequency to 48.1 +/- 3.2% of control, while AP4 was ineffective. These results indicate that group III mGluRs depress GABA release to DA neurons of the SNc through inhibition of presynaptic VDCCs, while presynaptic GABA(B) receptors directly impair transmitter exocytosis.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010721 Phosphinic Acids Inorganic or organic derivatives of phosphinic acid, H2PO(OH). They include phosphinates and phosphinic acid esters. Hypophosphorous Acids,Phosphinic Acid,Acid, Phosphinic,Acids, Hypophosphorous,Acids, Phosphinic
D011412 Propanolamines AMINO ALCOHOLS containing the propanolamine (NH2CH2CHOHCH2) group and its derivatives. Aminopropanols
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt

Related Publications

Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
January 1979, The Japanese journal of physiology,
Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
January 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
March 1998, Neuroreport,
Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
June 2009, Acta pharmacologica Sinica,
Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
June 1986, Neuroscience letters,
Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
November 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
April 2014, Neuropharmacology,
Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
March 2004, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
November 2015, European journal of pharmacology,
Michela Giustizieri, and Giorgio Bernardi, and Nicola B Mercuri, and Nicola Berretta
July 1973, Science (New York, N.Y.),
Copied contents to your clipboard!