Cyclosporine decreases prostaglandin E2 production in mouse medullary thick ascending limb cultured cells. 2005

Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.

Intrarenal vasoconstriction is thought to be the major pathogenesis of cyclosporine (CsA) nephrotoxicity. Nitric oxide (NO) and prostaglandin E2 (PGE2) are two of the major intrarenal vasodilators, which protect kidney from ischemia. CsA inhibited NO production in renal epithelial cells. The interaction between CsA and intrarenal PGE2 and NO production is still unclear. The aim of the study is to evaluate the interaction of CsA with intrarenal PGE2 and NO production in renal epithelial cells. Models of cultured mouse thick ascending limb (TAL) cells are chosen to perform the experiments, as TAL cells are the major site of intrarenal PGE2 production and target of CsA nephrotoxicity. We investigated the PGE2 production by enzyme-linked immunosorbent assay, and cyclooxygenase (COX-1 and COX-2) mRNA expression by RT-PCR in cultured cells treated with or without CsA. TAL cells maintained the main characteristics of their parental cells. TAL cells produce PGE2 mainly by COX-1 in steady state and by COX-2 in stimulated state by lipopolysaccharide (LPS). CsA (100 ng/ml) significantly reduced the PGE2 production up to 43% in TAL cells in LPS stimulated status (control versus CsA: 375.1 +/- 15.5 vs. 187.2 +/- 12.2 nm/mg protein, n = 7, P < 0.001). The effects were dose-dependent. The mRNA expression of COX1 is not affected and COX-2 is decreased in CsA-treated TAL cells. NO donor could prevent the inhibitory effects of CsA. We concluded that CsA decreased intrarenal PGE2 production in stimulated status mainly by decreasing COX-2 expression. NO might play a role in the CsA effect. The results suggested the role possible of PGE2 in CsA nephrotoxicity.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008138 Loop of Henle The U-shaped portion of the renal tubule in the KIDNEY MEDULLA, consisting of a descending limb and an ascending limb. It is situated between the PROXIMAL KIDNEY TUBULE and the DISTAL KIDNEY TUBULE. Ascending Limb of Loop of Henle,Descending Limb of Loop of Henle,Henle Loop
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
October 2000, Kidney international,
Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
January 2001, Transplantation proceedings,
Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
July 1996, The American journal of physiology,
Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
May 1990, The American journal of physiology,
Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
February 1987, The American journal of physiology,
Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
December 2002, Transplant international : official journal of the European Society for Organ Transplantation,
Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
August 1992, American journal of kidney diseases : the official journal of the National Kidney Foundation,
Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
May 1996, The American journal of physiology,
Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
December 1989, The Journal of pharmacology and experimental therapeutics,
Chiz-Tzung Chang, and Cheng-Chieh Hung, and Chih-Wei Yang, and Alain Vandewalle, and Mai-Szu Wu
November 1998, Transplantation proceedings,
Copied contents to your clipboard!