In vivo 13C Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the pathways of glucose metabolism, non-invasively, in living cell suspensions of Propionibacterium freudenreichii subsp. shermanii. This species is the main ripening flora of the Swiss-type cheeses and is widely used as propionic acid and vitamin B12 industrial producer. The flow of labelled [1-13C]glucose was monitored in living cell suspensions and enrichment was detected in main products like [1-13C]glycogen, [6-13C]lycogen, [1-13C]trehalose, [6-13C]trehalose, [1-13C]propionate, [2-13C]propionate, [3-13C]propionate, [1-13C]acetate, [2-13C]acetate, [1-13C]succinate, [2-13C]succinate and [1-13C]CO2. alpha and beta glucose consumption could be examined separately and were catabolized at the same rate. Three intermediates were also found out, namely [1-13C]glucose-6-phosphate, [6-13C]glucose-6-phosphate and [1-13C]glucose-1-phosphate. From the formation of intermediates such as [6-3C]glucose-6-phosphate and products like [6-13C]glycogen from [1-13C]glucose we concluded the bidirectionality of reactions in the first part of glycolysis and the isomerization at the triose-phosphate level. Comparison of spectra obtained after addition of [1-13C]glucose or [U-12C]glucose revealed production of [1-13C]CO2 which means that pentose phosphates pathway is active under our experimental conditions. From the isotopic pattern of trehalose, it could be postulated that trehalose biosynthesis occurred either by direct condensation of two glucose molecules or by gluconeogenesis. A chemically defined medium was elaborated for the study and trehalose was the main osmolyte found in the intracellular fraction of P. shermanii grown in this medium.