Molecular tracking of antigen-specific T-cell clones during immune responses. 2005

Nathalie Rufer
Swiss Institute for Experimental Cancer Research (ISREC), NCCR Molecular Oncology, 155 ch. des Boveresses, CH-1066 Epalinges, Switzerland. Nathalie.Rufer@isrec.ch

Despite extended international efforts, the mechanisms governing T-cell receptor repertoire selection and kinetics in response to foreign or tumour antigens remain poorly characterized. A central goal of current research is to develop improved, reliable, immunological monitoring methods that measure and combine such parameters as the frequency of antigen-specific T cells and their functional capacities, as well as their clonal expansion during immune responses. Detecting and tracking defined anti-viral- and anti-tumour-specific T-cell responses ex vivo should lead to improvements in therapeutic strategies against viral infection or cancer in the future. During the past few years, highly sensitive tools have been developed to enable the molecular dissection and tracking of clonal T-cell expansion in animal models as well as in humans.

UI MeSH Term Description Entries
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D022801 Complementarity Determining Regions Three regions (CDR1; CDR2 and CDR3) of amino acid sequence in the IMMUNOGLOBULIN VARIABLE REGION that are highly divergent. Together the CDRs from the light and heavy immunoglobulin chains form a surface that is complementary to the antigen. These regions are also present in other members of the immunoglobulin superfamily, for example, T-cell receptors (RECEPTORS, ANTIGEN, T-CELL). Complementarity Determining Region,Complementarity Determining Region 1,Complementarity Determining Region 2,Complementarity Determining Region 3,Complementarity Determining Region I,Complementarity Determining Region II,Complementarity Determining Region III,Complementarity-Determining Region,Complementarity-Determining Region 3,Hypervariable Region, Immunoglobulin,Hypervariable Regions, Immunoglobulin,Third Complementarity-Determining Region,Complementarity-Determining Region 3s,Complementarity-Determining Region, Third,Complementarity-Determining Regions,Complementarity-Determining Regions, Third,Immunoglobulin Hypervariable Region,Immunoglobulin Hypervariable Regions,Region, Complementarity Determining,Region, Immunoglobulin Hypervariable,Regions, Complementarity Determining,Regions, Complementarity-Determining,Regions, Immunoglobulin Hypervariable,Third Complementarity Determining Region,Third Complementarity-Determining Regions

Related Publications

Nathalie Rufer
April 1996, Current opinion in immunology,
Nathalie Rufer
March 1982, Pharmacological reviews,
Nathalie Rufer
March 1982, Journal of immunology (Baltimore, Md. : 1950),
Nathalie Rufer
January 2010, Cancer journal (Sudbury, Mass.),
Nathalie Rufer
September 2014, Gan to kagaku ryoho. Cancer & chemotherapy,
Nathalie Rufer
May 2023, Trends in immunology,
Nathalie Rufer
January 2011, Immunology and cell biology,
Copied contents to your clipboard!