Hemichordates and the origin of chordates. 2005

John Gerhart, and Christopher Lowe, and Marc Kirschner
Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA. gerhart@socrates.berkeley.edu

Hemichordates, the phylum of bilateral animals most closely related to chordates, could reveal the evolutionary origins of chordate traits such as the nerve cord, notochord, gill slits and tail. The anteroposterior maps of gene expression domains for 38 genes of chordate neural patterning are highly similar for hemichordates and chordates, even though hemichordates have a diffuse nerve-net. About 40% of the domains are not present in protostome maps. We propose that this map, the gill slits and the tail date to the deuterostome ancestor. The map of dorsoventral expression domains, centered on a Bmp-Chordin axis, differs between the two groups; hemichordates resemble protostomes more than they do chordates. The dorsoventral axis might have undergone extensive modification in the chordate line, including centralization of the nervous system, segregation of epidermis, derivation of the notochord, and an inversion of organization.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002816 Chordata, Nonvertebrate A portion of the animal phylum Chordata comprised of the subphyla CEPHALOCHORDATA; UROCHORDATA, and HYPEROTRETI, but not including the Vertebrata (VERTEBRATES). It includes nonvertebrate animals having a NOTOCHORD during some developmental stage. Invertebrate Chordate,Chordatas, Nonvertebrate,Chordate, Invertebrate,Chordates, Invertebrate,Invertebrate Chordates,Nonvertebrate Chordata,Nonvertebrate Chordatas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014714 Vertebrates Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes. Vertebrate
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019521 Body Patterning The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc. Axial Patterning (Embryology),Embryonic Pattern Formation,Polarity of Development,Body Pattern Formation,Body Pattern Specification,Embryonic Pattern Specification,Development Polarity,Embryonic Pattern Formations,Formation, Embryonic Pattern,Pattern Formation, Body,Pattern Formation, Embryonic,Pattern Specification, Body,Pattern Specification, Embryonic,Patterning, Axial (Embryology),Patterning, Body,Specification, Body Pattern,Specification, Embryonic Pattern

Related Publications

John Gerhart, and Christopher Lowe, and Marc Kirschner
September 2006, PLoS biology,
John Gerhart, and Christopher Lowe, and Marc Kirschner
June 2019, Proceedings of the National Academy of Sciences of the United States of America,
John Gerhart, and Christopher Lowe, and Marc Kirschner
December 1997, Journal of molecular evolution,
John Gerhart, and Christopher Lowe, and Marc Kirschner
January 1948, Biological reviews of the Cambridge Philosophical Society,
John Gerhart, and Christopher Lowe, and Marc Kirschner
February 2017, Biological reviews of the Cambridge Philosophical Society,
John Gerhart, and Christopher Lowe, and Marc Kirschner
December 1953, Nature,
John Gerhart, and Christopher Lowe, and Marc Kirschner
March 1999, Development genes and evolution,
John Gerhart, and Christopher Lowe, and Marc Kirschner
January 2021, Frontiers in neuroanatomy,
John Gerhart, and Christopher Lowe, and Marc Kirschner
January 2019, BMC evolutionary biology,
John Gerhart, and Christopher Lowe, and Marc Kirschner
November 2007, Medecine sciences : M/S,
Copied contents to your clipboard!