p300 regulates p63 transcriptional activity. 2005

Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.

The transcriptional co-activator p300 has been reported to regulate the tumor suppressor p53 and its ortholog p73. Here we describe a study showing that this coactivator also regulates the transcriptional function of p63. p300 bound to the N-terminal domain of p63gamma, and p63gamma bound to the N terminus of p300 in vitro and in cells. p300, but not its acetylase-defective mutant AT2, stimulated p63gamma-dependent transcription and induction of p21 in cells, consequently leading to G1 arrest. Inversely, the deltaN-p63gamma isoform as well as p300AT2 inhibited the induction of p21 by p63gamma. These results suggest that p300 regulates p63-dependent transcription of p21.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010750 Phosphoproteins Phosphoprotein
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
May 2009, Nucleic acids research,
Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
November 2003, The Journal of biological chemistry,
Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
May 2016, Cell death & disease,
Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
February 2008, Proceedings of the National Academy of Sciences of the United States of America,
Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
January 2010, American journal of physiology. Endocrinology and metabolism,
Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
July 2013, The Biochemical journal,
Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
June 2013, The Journal of biological chemistry,
Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
February 2006, The Journal of biological chemistry,
Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
May 2013, Cell cycle (Georgetown, Tex.),
Mary MacPartlin, and Shelya Zeng, and Hunjoo Lee, and Daniel Stauffer, and Yetao Jin, and Mathew Thayer, and Hua Lu
April 2013, Biochemical pharmacology,
Copied contents to your clipboard!